Options
Moll, Ute M.
Loading...
Preferred name
Moll, Ute M.
Official Name
Moll, Ute M.
Alternative Name
Moll, U.
Moll, U. M.
Moll, Ute
Main Affiliation
Now showing 1 - 3 of 3
2012Journal Article [["dc.bibliographiccitation.firstpage","275"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Experimental Medicine"],["dc.bibliographiccitation.lastpage","289"],["dc.bibliographiccitation.volume","209"],["dc.contributor.author","Schulz, Ramona"],["dc.contributor.author","Marchenko, Natalia D."],["dc.contributor.author","Holembowski, Lena"],["dc.contributor.author","Fingerle-Rowson, Guenter"],["dc.contributor.author","Pesic, Marina"],["dc.contributor.author","Zender, Lars"],["dc.contributor.author","Dobbelstein, Matthias"],["dc.contributor.author","Moll, Ute M."],["dc.date.accessioned","2018-11-07T09:13:28Z"],["dc.date.available","2018-11-07T09:13:28Z"],["dc.date.issued","2012"],["dc.description.abstract","Intracellular macrophage migration inhibitory factor (MIF) often becomes stabilized in human cancer cells. MIF can promote tumor cell survival, and elevated MIF protein correlates with tumor aggressiveness and poor prognosis. However, the molecular mechanism facilitating MIF stabilization in tumors is not understood. We show that the tumor-activated HSP90 chaperone complex protects MIF from degradation. Pharmacological inhibition of HSP90 activity, or siRNA-mediated knockdown of HSP90 or HDAC6, destabilizes MIF in a variety of human cancer cells. The HSP90-associated E3 ubiquitin ligase CHIP mediates the ensuing proteasome-dependent MIF degradation. Cancer cells contain constitutive endogenous MIF-HSP90 complexes. siRNA-mediated MIF knockdown inhibits proliferation and triggers apoptosis of cultured human cancer cells, whereas HSP90 inhibitor-induced apoptosis is overridden by ectopic MIF expression. In the ErbB2 transgenic model of human HER2-positive breast cancer, genetic ablation of MIF delays tumor progression and prolongs overall survival of mice. Systemic treatment with the HSP90 inhibitor 17AAG reduces MIF expression and blocks growth of MIF-expressing, but not MIF-deficient, tumors. Together, these findings identify MIF as a novel HSP90 client and suggest that HSP90 inhibitors inhibit ErbB2-driven breast tumor growth at least in part by destabilizing MIF."],["dc.identifier.doi","10.1084/jem.20111117"],["dc.identifier.isi","000301943200009"],["dc.identifier.pmid","22271573"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10625"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/27181"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Rockefeller Univ Press"],["dc.relation.issn","0022-1007"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Inhibiting the HSP90 chaperone destabilizes macrophage migration inhibitory factor and thereby inhibits breast tumor progression"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.artnumber","e2661"],["dc.bibliographiccitation.journal","Cell Death and Disease"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Alexandrova, Evguenia M."],["dc.contributor.author","Mirza, Safia A."],["dc.contributor.author","Xu, S."],["dc.contributor.author","Schulz-Heddergott, Ramona"],["dc.contributor.author","Marchenko, Natalia D."],["dc.contributor.author","Moll, Ute M."],["dc.date.accessioned","2018-11-07T10:26:40Z"],["dc.date.available","2018-11-07T10:26:40Z"],["dc.date.issued","2017"],["dc.description.abstract","Missense mutations in TP53 comprise > 75% of all p53 alterations in cancer, resulting in highly stabilized mutant p53 proteins that not only lose their tumor-suppressor activity, but often acquire oncogenic gain-of-functions (GOFs). GOF manifests itself in accelerated tumor onset, increased metastasis, increased drug resistance and shortened survival in patients and mice. A known prerequisite for GOF is mutant p53 protein stabilization, which itself is linked to aberrant protein conformation. However, additional determinants for mutant p53 stabilization likely exist. Here we show that in initially heterozygous mouse tumors carrying the hotspot GOF allele R248Q (p53Q/+), another necessary prerequisite for mutant p53 stabilization and GOF in vivo is loss of the remaining wild-type p53 allele, termed loss-of-heterozygosity (LOH). Thus, in mouse tumors with high frequency of p53 LOH (osteosarcomas and fibrosarcomas), we find that mutant p53 protein is stabilized (16/17 cases, 94%) and tumor onset is significantly accelerated compared with p53+/- tumors (GOF). In contrast, in mouse tumors with low frequency of p53 LOH (MMTV-Neu breast carcinomas), mutant p53 protein is not stabilized (16/20 cases, 80%) and GOF is not observed. Of note, human genomic databases (TCGA, METABRIC etc.) show a high degree of p53 LOH in all examined tumor types that carry missense p53 mutations, including sarcomas and breast carcinomas (with and without HER2 amplification). These data - while cautioning that not all genetic mouse models faithfully represent the human situation - demonstrate for the first time that p53 LOH is a critical prerequisite for missense mutant p53 stabilization and GOF in vivo."],["dc.identifier.doi","10.1038/cddis.2017.80"],["dc.identifier.isi","000397447100026"],["dc.identifier.pmid","28277540"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14951"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43090"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2041-4889"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","p53 loss-of-heterozygosity is a necessary prerequisite for mutant p53 stabilization and gain-of-function in vivo"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Journal Article [["dc.bibliographiccitation.firstpage","577"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Molecular Cancer Research"],["dc.bibliographiccitation.lastpage","588"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Li, Dun"],["dc.contributor.author","Marchenko, Natalia D."],["dc.contributor.author","Schulz, Ramona"],["dc.contributor.author","Fischer, Victoria"],["dc.contributor.author","Velasco-Hernandez, Talia"],["dc.contributor.author","Talos, Flaminia"],["dc.contributor.author","Moll, Ute M."],["dc.date.accessioned","2018-11-07T08:56:28Z"],["dc.date.available","2018-11-07T08:56:28Z"],["dc.date.issued","2011"],["dc.description.abstract","The tight control of wild-type p53 by mainly MDM2 in normal cells is permanently lost in tumors harboring mutant p53, which exhibit dramatic constitutive p53 hyperstabilization that far exceeds that of wild-type p53 tumors. Importantly, mutant p53 hyperstabilization is critical for oncogenic gain of function of mutant p53 in vivo. Current insight into the mechanism of this dysregulation is fragmentary and largely derived from ectopically constructed cell systems. Importantly, mutant p53 knock-in mice established that normal mutant p53 tissues have sufficient enzymatic reserves in MDM2 and other E3 ligases to maintain full control of mutant p53. We find that in human cancer cells, endogenous mutant p53, despite its ability to interact with MDM2, suffers from a profound lack of ubiquitination as the root of its degradation defect. In contrast to wild-type p53, the many mutant p53 proteins which are conformationally aberrant are engaged in complexes with the HSP90 chaperone machinery to prevent its aggregation. In contrast to wild-type p53 cancer cells, we show that in mutant p53 cancer cells, this HSP90 interaction blocks the endogenous MDM2 and CHIP (carboxy-terminus of Hsp70-interacting protein) E3 ligase activity. Interference with HSP90 either by RNA interference against HSF1, the transcriptional regulator of the HSP90 pathway, or by direct knockdown of Hsp90 protein or by pharmacologic inhibition of Hsp90 activity with 17AAG (17-allylamino-17-demethoxygeldanamycin) destroys the complex, liberates mutant p53, and reactivates endogenous MDM2 and CHIP to degrade mutant p53. Of note, 17AAG induces a stronger viability loss in mutant p53 than in wild-type p53 cancer cells. Our data support the rationale that suppression of mutant p53 levels in vivo in established cancers might achieve clinically significant effects. Mol Cancer Res; 9(5); 577-88. (C) 2011 AACR."],["dc.identifier.doi","10.1158/1541-7786.MCR-10-0534"],["dc.identifier.isi","000290610600006"],["dc.identifier.pmid","21478269"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/23161"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Assoc Cancer Research"],["dc.relation.issn","1541-7786"],["dc.title","Functional Inactivation of Endogenous MDM2 and CHIP by HSP90 Causes Aberrant Stabilization of Mutant p53 in Human Cancer Cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS