Options
Behn, Daniela
Loading...
Preferred name
Behn, Daniela
Official Name
Behn, Daniela
Alternative Name
Behn, D.
Now showing 1 - 3 of 3
2011Conference Abstract [["dc.bibliographiccitation.journal","European Biophysics Journal"],["dc.bibliographiccitation.volume","40"],["dc.contributor.author","Behn, Daniela"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2018-11-07T08:53:33Z"],["dc.date.available","2018-11-07T08:53:33Z"],["dc.date.issued","2011"],["dc.format.extent","39"],["dc.identifier.isi","000293637300015"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/22439"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","New York"],["dc.relation.eventlocation","Budapest, Hungary"],["dc.relation.issn","0175-7571"],["dc.title","Interaction of filamentous actin and ezrin within surface modified cylindrical nanopores"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2012Journal Article Research Paper [["dc.bibliographiccitation.firstpage","57"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Colloid and Interface Science"],["dc.bibliographiccitation.lastpage","63"],["dc.bibliographiccitation.volume","366"],["dc.contributor.author","Lazzara, Thomas D."],["dc.contributor.author","Behn, Daniela"],["dc.contributor.author","Kliesch, Torben-Tobias"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2017-09-07T11:49:01Z"],["dc.date.available","2017-09-07T11:49:01Z"],["dc.date.issued","2012"],["dc.description.abstract","Anodic aluminum oxide (AAO) substrates with aligned, cylindrical, non-intersecting pores with diameters of 75 nm and depths of 3.5 or 10 mu m were functionalized with lipid monolayers harboring different receptor lipids. AAO was first functionalized with dodecyl-trichlorosilane, followed by fusion of small unilamellar vesicles (SUVs) forming a lipid monolayer. The SUVs' lipid composition was transferred onto the AAO surface, allowing us to control the surface receptor density. Owing to the optical transparency of the MO, the overall vesicle spreading process and subsequent protein binding to the receptor-doped lipid monolayers could be investigated in situ by optical waveguide spectroscopy (OWS). SUV spreading occurred at the pore-rim interface, followed by lateral diffusion of lipids within the pore-interior surface until homogeneous coverage was achieved with a lipid monolayer. The functionality of the system was demonstrated through streptavidin binding onto a biotin-DOPE containing POPC membrane, showing maximum protein coverage at 10 mol% of biotin-DOPE. The system enabled us to monitor in real-time the selective extraction of two histidine-tagged proteins, PIGEA14 (14 kDa) and ezrin (70 kDa), directly from cell lysate solutions using a DOGS-NTA(Ni)/DOPC (1:9) membrane. The purification process including protein binding and elution was monitored by OWS and confirmed by SOS-PAGE. (C) 2011 Elsevier Inc. All rights reserved."],["dc.identifier.doi","10.1016/j.jcis.2011.09.067"],["dc.identifier.gro","3142589"],["dc.identifier.isi","000297385900009"],["dc.identifier.pmid","22033154"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8956"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0021-9797"],["dc.title","Phospholipids as an alternative to direct covalent coupling: Surface functionalization of nanoporous alumina for protein recognition and purification"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2010Journal Article Research Paper [["dc.bibliographiccitation.firstpage","47"],["dc.bibliographiccitation.issue","1-3"],["dc.bibliographiccitation.journal","Biophysical Chemistry"],["dc.bibliographiccitation.lastpage","53"],["dc.bibliographiccitation.volume","150"],["dc.contributor.author","Behn, Daniela"],["dc.contributor.author","Bosk, Sabine"],["dc.contributor.author","Hoffmeister, Helen"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Witzgall, Ralph"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2017-09-07T11:45:19Z"],["dc.date.available","2017-09-07T11:45:19Z"],["dc.date.issued","2010"],["dc.description.abstract","The pkd1 and pkd2 genes encode for the proteins polycystin-1 (PC1) and polycystin-2 (PC2). These genes are mutated in patients diagnosed with autosomal dominant polycystic kidney disease. PC1 and PC2 interact via their C-terminal, cytosolic regions, which is an essential step in the regulation of cell proliferation and differentiation. Here, we developed an assay that allowed us to quantitatively monitor the interaction of the C-terminal region of PC1 (cPC1) with that of PC2 (cPC2) to be able to answer the question of how Ca2+ influences the PC1/PC2 complex formation. By means of the quartz crystal microbalance (QCM) technique, we were able to determine binding affinities and kinetic constants of the cPC1/cPC2 interaction using a model based on the scaled particle theory. The results suggest that cPC2 forms trimers in solution in the absence of Ca2+, which bind in a one step process to cPC1. (C) 2010 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.bpc.2010.02.005"],["dc.identifier.gro","3142877"],["dc.identifier.isi","000279500100006"],["dc.identifier.pmid","20206434"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/329"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1873-4200"],["dc.relation.issn","0301-4622"],["dc.title","Quantifying the interaction of the C-terminal regions of polycystin-2 and polycystin-1 attached to a lipid bilayer by means of QCM"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS