Options
Burston, Raymond B.
Loading...
Preferred name
Burston, Raymond B.
Official Name
Burston, Raymond B.
Alternative Name
Burston, R. B.
Burston, Raymond
Burston, R.
Main Affiliation
Now showing 1 - 6 of 6
2015Journal Article [["dc.bibliographiccitation.firstpage","201"],["dc.bibliographiccitation.issue","1-4"],["dc.bibliographiccitation.journal","Space Science Reviews"],["dc.bibliographiccitation.lastpage","219"],["dc.bibliographiccitation.volume","196"],["dc.contributor.author","Burston, Raymond"],["dc.contributor.author","Gizon, Laurent"],["dc.contributor.author","Birch, Aaron C."],["dc.date.accessioned","2017-09-07T11:49:43Z"],["dc.date.available","2017-09-07T11:49:43Z"],["dc.date.issued","2015"],["dc.description.abstract","Time-distance helioseismology uses cross-covariances of wave motions on the solar surface to determine the travel times of wave packets moving from one surface location to another. We review the methodology to interpret travel-time measurements in terms of small, localised perturbations to a horizontally homogeneous reference solar model. Using the first Born approximation, we derive and compute 3D travel-time sensitivity (Fréchet) kernels for perturbations in sound-speed, density, pressure, and vector flows. While kernels for sound speed and flows had been computed previously, here we extend the calculation to kernels for density and pressure, hence providing a complete description of the effects of solar dynamics and structure on travel times. We treat three thermodynamic quantities as independent and do not assume hydrostatic equilibrium. We present a convenient approach to computing damped Green’s functions using a normal-mode summation. The Green’s function must be computed on a wavenumber grid that has sufficient resolution to resolve the longest lived modes. The typical kernel calculations used in this paper are computer intensive and require on the order of 600 CPU hours per kernel. Kernels are validated by computing the travel-time perturbation that results from horizontally-invariant perturbations using two independent approaches. At fixed sound-speed, the density and pressure kernels are approximately related through a negative multiplicative factor, therefore implying that perturbations in density and pressure are difficult to disentangle. Mean travel-times are not only sensitive to sound-speed, density and pressure perturbations, but also to flows, especially vertical flows. Accurate sensitivity kernels are needed to interpret complex flow patterns such as convection."],["dc.identifier.doi","10.1007/s11214-015-0136-0"],["dc.identifier.gro","3147407"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4996"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0038-6308"],["dc.title","Interpretation of Helioseismic Travel Times"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","A53"],["dc.bibliographiccitation.journal","Astronomy and Astrophysics"],["dc.bibliographiccitation.volume","625"],["dc.contributor.author","Schunker, Hannah"],["dc.contributor.author","Birch, A. C."],["dc.contributor.author","Cameron, R. H."],["dc.contributor.author","Braun, D. C."],["dc.contributor.author","Gizon, Laurent"],["dc.contributor.author","Burston, R. B."],["dc.date.accessioned","2020-12-10T18:11:46Z"],["dc.date.available","2020-12-10T18:11:46Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1051/0004-6361/201834627"],["dc.identifier.eissn","1432-0746"],["dc.identifier.issn","0004-6361"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74133"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Average motion of emerging solar active region polarities"],["dc.title.alternative","I. Two phases of emergence"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article [["dc.bibliographiccitation.firstpage","329"],["dc.bibliographiccitation.issue","2-3"],["dc.bibliographiccitation.journal","Experimental Astronomy"],["dc.bibliographiccitation.lastpage","391"],["dc.bibliographiccitation.volume","40"],["dc.contributor.author","Tinetti, Giovanna"],["dc.contributor.author","Drossart, Pierre"],["dc.contributor.author","Eccleston, Paul"],["dc.contributor.author","Hartogh, Paul"],["dc.contributor.author","Isaak, Kate"],["dc.contributor.author","Linder, Martin"],["dc.contributor.author","Lovis, Christophe"],["dc.contributor.author","Micela, Giusi"],["dc.contributor.author","Ollivier, Marc"],["dc.contributor.author","Rengel, Malte"],["dc.contributor.author","Sousa, S."],["dc.contributor.author","Gizon, Laurent"],["dc.contributor.author","Burston, Raymond"],["dc.contributor.author","Affer, L."],["dc.date.accessioned","2021-03-05T09:05:20Z"],["dc.date.available","2021-03-05T09:05:20Z"],["dc.date.issued","2015"],["dc.identifier.doi","10.1007/s10686-015-9484-8"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80444"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-393"],["dc.relation.eissn","1572-9508"],["dc.relation.issn","0922-6435"],["dc.title","The EChO science case"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2009Journal Article [["dc.bibliographiccitation.firstpage","491"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Experimental Astronomy"],["dc.bibliographiccitation.lastpage","527"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Appourchaux, Thierry"],["dc.contributor.author","Burston, Raymond"],["dc.contributor.author","Chen, Yanbei"],["dc.contributor.author","Cruise, Michael"],["dc.contributor.author","Dittus, Hansjörg"],["dc.contributor.author","Foulon, Bernard"],["dc.contributor.author","Gill, Patrick"],["dc.contributor.author","Gizon, Laurent"],["dc.contributor.author","Klein, Hugh"],["dc.contributor.author","Klioner, Sergei"],["dc.contributor.author","Kopeikin, Sergei"],["dc.contributor.author","Krüger, Hans"],["dc.contributor.author","Lämmerzahl, Claus"],["dc.contributor.author","Lobo, Alberto"],["dc.contributor.author","Luo, Xinlian"],["dc.contributor.author","Margolis, Helen"],["dc.contributor.author","Ni, Wei-Tou"],["dc.contributor.author","Patón, Antonio Pulido"],["dc.contributor.author","Peng, Qiuhe"],["dc.contributor.author","Peters, Achim"],["dc.contributor.author","Rasel, Ernst"],["dc.contributor.author","Rüdiger, Albrecht"],["dc.contributor.author","Samain, Étienne"],["dc.contributor.author","Selig, Hanns"],["dc.contributor.author","Shaul, Diana"],["dc.contributor.author","Sumner, Timothy"],["dc.contributor.author","Theil, Stephan"],["dc.contributor.author","Touboul, Pierre"],["dc.contributor.author","Turyshev, Slava"],["dc.contributor.author","Wang, Haitao"],["dc.contributor.author","Wang, Li"],["dc.contributor.author","Wen, Linqing"],["dc.contributor.author","Wicht, Andreas"],["dc.contributor.author","Wu, Ji"],["dc.contributor.author","Zhang, Xiaomin"],["dc.contributor.author","Zhao, Cheng"],["dc.date.accessioned","2017-09-07T11:49:44Z"],["dc.date.available","2017-09-07T11:49:44Z"],["dc.date.issued","2009"],["dc.description.abstract","ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test general relativity with an improvement in sensitivity of over three orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and the anomalous Pioneer acceleration, thereby probing dark matter and dark energy gravitationally. It is an international project, with major contributions from Europe and China and is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals. A second mission, ASTROD (ASTROD II) is envisaged as a three-spacecraft mission which would test General Relativity to 1 ppb, enable detection of solar g-modes, measure the solar Lense–Thirring effect to 10 ppm, and probe gravitational waves at frequencies below the LISA bandwidth. In the third phase (ASTROD III or Super-ASTROD), larger orbits could be implemented to map the outer solar system and to probe primordial gravitational-waves at frequencies below the ASTROD II bandwidth."],["dc.identifier.doi","10.1007/s10686-008-9131-8"],["dc.identifier.gro","3147392"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4986"],["dc.language.iso","en"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.relation.issn","0922-6435"],["dc.title","Astrodynamical Space Test of Relativity Using Optical Devices I (ASTROD I)—A class-M fundamental physics mission proposal for Cosmic Vision 2015–2025"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2013Journal Article [["dc.bibliographiccitation.artnumber","32"],["dc.bibliographiccitation.firstpage","32"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Astrophysical Journal"],["dc.bibliographiccitation.volume","771"],["dc.contributor.author","Švanda, Michal"],["dc.contributor.author","Roudier, Thierry"],["dc.contributor.author","Rieutord, Michel"],["dc.contributor.author","Burston, Raymond"],["dc.contributor.author","Gizon, Laurent"],["dc.date.accessioned","2017-09-07T11:48:43Z"],["dc.date.available","2017-09-07T11:48:43Z"],["dc.date.issued","2013"],["dc.identifier.doi","10.1088/0004-637x/771/1/32"],["dc.identifier.gro","3147046"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4778"],["dc.notes.intern","DOI Import GROB-393"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","chake"],["dc.publisher","IOP Publishing"],["dc.relation.eissn","1538-4357"],["dc.relation.issn","0004-637X"],["dc.title","Comparison of Solar Surface Flows Inferred from Time-Distance Helioseismology and Coherent Structure Tracking Using HMI/ SDO Observations"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2011Journal Article Erratum [["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Astronomische Nachrichten"],["dc.bibliographiccitation.volume","332"],["dc.contributor.author","Birch, Aaron C."],["dc.contributor.author","Gizon, Laurent"],["dc.contributor.author","Burston, Raymond"],["dc.date.accessioned","2017-09-07T11:48:38Z"],["dc.date.available","2017-09-07T11:48:38Z"],["dc.date.issued","2011"],["dc.identifier.doi","10.1002/asna.201111557"],["dc.identifier.gro","3146965"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4729"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","Wiley-Blackwell"],["dc.relation.iserratumof","/handle/2/4728"],["dc.relation.issn","0004-6337"],["dc.title","Erratum: Linear sensitivity of helioseismic travel times to local flows"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","erratum_ja"],["dspace.entity.type","Publication"]]Details DOI