Options
Cramer, Patrick
Loading...
Preferred name
Cramer, Patrick
Official Name
Cramer, Patrick
Alternative Name
Cramer, P.
Main Affiliation
Now showing 1 - 10 of 13
2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","8"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Structural & Molecular Biology"],["dc.bibliographiccitation.lastpage","13"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Wang, Haibo"],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2022-02-21T12:35:13Z"],["dc.date.available","2022-02-21T12:35:13Z"],["dc.date.issued","2020"],["dc.description.abstract","Recognition of histone-modified nucleosomes by specific reader domains underlies the regulation of chromatin-associated processes. Whereas structural studies revealed how reader domains bind modified histone peptides, it is unclear how reader domains interact with modified nucleosomes. Here, we report the cryo-electron microscopy structure of the PWWP reader domain of human transcriptional coactivator LEDGF in complex with an H3K36-methylated nucleosome at 3.2-Å resolution. The structure reveals multivalent binding of the reader domain to the methylated histone tail and to both gyres of nucleosomal DNA, explaining the known cooperative interactions. The observed cross-gyre binding may contribute to nucleosome integrity during transcription. The structure also explains how human PWWP domain-containing proteins are recruited to H3K36-methylated regions of the genome for transcription, histone acetylation and methylation, and for DNA methylation and repair."],["dc.identifier.doi","10.1038/s41594-019-0345-4"],["dc.identifier.pmid","31819277"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/100140"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/196"],["dc.language.iso","en"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1545-9985"],["dc.relation.issn","1545-9993"],["dc.relation.workinggroup","RG Cramer"],["dc.title","Structure of H3K36-methylated nucleosome-PWWP complex reveals multivalent cross-gyre binding"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Preprint [["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Ochmann, Moritz"],["dc.contributor.author","Engeholm, Maik"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2022-02-23T11:49:10Z"],["dc.date.available","2022-02-23T11:49:10Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1101/2020.11.30.403857"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/100351"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/136"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.workinggroup","RG Cramer"],["dc.title","Structural basis of nucleosome transcription mediated by Chd1 and FACT"],["dc.type","preprint"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","607"],["dc.bibliographiccitation.issue","7720"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","612"],["dc.bibliographiccitation.volume","560"],["dc.contributor.author","Vos, Seychelle M."],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Boehning, Marc"],["dc.contributor.author","Wigge, Christoph"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2020-12-10T18:09:59Z"],["dc.date.available","2020-12-10T18:09:59Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1038/s41586-018-0440-4"],["dc.identifier.eissn","1476-4687"],["dc.identifier.issn","0028-0836"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73819"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Structure of activated transcription complex Pol II–DSIF–PAF–SPT6"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","12172"],["dc.bibliographiccitation.issue","46"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.lastpage","12177"],["dc.bibliographiccitation.volume","114"],["dc.contributor.author","Malvezzi, Stefano"],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Aloisi, Claudia M. N."],["dc.contributor.author","Angelov, Todor"],["dc.contributor.author","Cramer, Patrick"],["dc.contributor.author","Sturla, Shana J."],["dc.date.accessioned","2018-01-09T12:11:12Z"],["dc.date.available","2018-01-09T12:11:12Z"],["dc.date.issued","2017"],["dc.description.abstract","Several anticancer agents that form DNA adducts in the minor groove interfere with DNA replication and transcription to induce apoptosis. Therapeutic resistance can occur, however, when cells are proficient in the removal of drug-induced damage. Acylfulvenes are a class of experimental anticancer agents with a unique repair profile suggesting their capacity to stall RNA polymerase (Pol) II and trigger transcription-coupled nucleotide excision repair. Here we show how different forms of DNA alkylation impair transcription by RNA Pol II in cells and with the isolated enzyme and unravel a mode of RNA Pol II stalling that is due to alkylation of DNA in the minor groove. We incorporated a model for acylfulvene adducts, the stable 3-deaza-3-methoxynaphtylethyl-adenosine analog (3d-Napht-A), and smaller 3-deaza-adenosine analogs, into DNA oligonucleotides to assess RNA Pol II transcription elongation in vitro. RNA Pol II was strongly blocked by a 3d-Napht-A analog but bypassed smaller analogs. Crystal structure analysis revealed that a DNA base containing 3d-Napht-A can occupy the +1 templating position and impair closing of the trigger loop in the Pol II active center and polymerase translocation into the next template position. These results show how RNA Pol II copes with minor-groove DNA alkylation and establishes a mechanism for drug resistance."],["dc.identifier.doi","10.1073/pnas.1706592114"],["dc.identifier.pmid","29087308"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11584"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1091-6490"],["dc.title","Mechanism of RNA polymerase II stalling by DNA alkylation"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article [["dc.bibliographiccitation.firstpage","601"],["dc.bibliographiccitation.issue","7720"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","606"],["dc.bibliographiccitation.volume","560"],["dc.contributor.author","Vos, Seychelle M."],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2020-12-10T18:09:59Z"],["dc.date.available","2020-12-10T18:09:59Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1038/s41586-018-0442-2"],["dc.identifier.eissn","1476-4687"],["dc.identifier.issn","0028-0836"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73820"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Structure of paused transcription complex Pol II–DSIF–NELF"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","668"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Nature Structural & Molecular Biology"],["dc.bibliographiccitation.lastpage","677"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Vos, Seychelle M."],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2021-04-14T08:25:46Z"],["dc.date.available","2021-04-14T08:25:46Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1038/s41594-020-0437-1"],["dc.identifier.pmid","32541898"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81729"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/49"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1545-9985"],["dc.relation.issn","1545-9993"],["dc.relation.workinggroup","RG Cramer"],["dc.title","Structure of complete Pol II–DSIF–PAF–SPT6 transcription complex reveals RTF1 allosteric activation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Preprint [["dc.contributor.author","Oberbeckmann, Elisa"],["dc.contributor.author","Niebauer, Vanessa"],["dc.contributor.author","Watanabe, Shinya"],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Moldt, Manuela"],["dc.contributor.author","Schmid, Andrea"],["dc.contributor.author","Cramer, Patrick"],["dc.contributor.author","Peterson, Craig L."],["dc.contributor.author","Eustermann, Sebastian"],["dc.contributor.author","Hopfner, Karl-Peter"],["dc.contributor.author","Korber, Philipp"],["dc.date.accessioned","2022-02-23T10:02:59Z"],["dc.date.available","2022-02-23T10:02:59Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1101/2020.02.28.969618"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/100238"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/35"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.workinggroup","RG Cramer"],["dc.title","Ruler elements in chromatin remodelers set nucleosome array spacing and phasing"],["dc.type","preprint"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article Research Paper [["dc.bibliographiccitation.firstpage","3096.e8"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","Molecular Cell"],["dc.bibliographiccitation.lastpage","3109.e8"],["dc.bibliographiccitation.volume","81"],["dc.contributor.author","Žumer, Kristina"],["dc.contributor.author","Maier, Kerstin C."],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Jaeger, Martin G."],["dc.contributor.author","Rus, Petra"],["dc.contributor.author","Winter, Georg"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2022-02-22T15:57:48Z"],["dc.date.available","2022-02-22T15:57:48Z"],["dc.date.issued","2021"],["dc.description.abstract","Transcription by RNA polymerase II (RNA Pol II) relies on the elongation factors PAF1 complex (PAF), RTF1, and SPT6. Here, we use rapid factor depletion and multi-omics analysis to investigate how these elongation factors influence RNA Pol II elongation activity in human cells. Whereas depletion of PAF subunits PAF1 and CTR9 has little effect on cellular RNA synthesis, depletion of RTF1 or SPT6 strongly compromises RNA Pol II activity, albeit in fundamentally different ways. RTF1 depletion decreases RNA Pol II velocity, whereas SPT6 depletion impairs RNA Pol II progression through nucleosomes. These results show that distinct elongation factors stimulate either RNA Pol II velocity or RNA Pol II progression through chromatin in vivo. Further analysis provides evidence for two distinct barriers to early elongation: the promoter-proximal pause site and the +1 nucleosome. It emerges that the first barrier enables loading of elongation factors that are required to overcome the second and subsequent barriers to transcription."],["dc.identifier.doi","10.1016/j.molcel.2021.05.028"],["dc.identifier.pmid","34146481"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/100195"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/403"],["dc.language.iso","en"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1097-4164"],["dc.relation.issn","1097-2765"],["dc.relation.workinggroup","RG Cramer"],["dc.title","Two distinct mechanisms of RNA polymerase II elongation stimulation in vivo"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article [["dc.bibliographiccitation.artnumber","5432"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Vos, Seychelle M."],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2022-03-01T11:45:57Z"],["dc.date.available","2022-03-01T11:45:57Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1038/s41467-018-07870-y"],["dc.identifier.pii","7870"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103510"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","2041-1723"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Structure of transcribing RNA polymerase II-nucleosome complex"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","154-156"],["dc.bibliographiccitation.issue","7819"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","156"],["dc.bibliographiccitation.volume","584"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Kokic, Goran"],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Tegunov, Dimitry"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2022-02-21T13:20:58Z"],["dc.date.available","2022-02-21T13:20:58Z"],["dc.date.issued","2020"],["dc.description.abstract","The new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses an RNA-dependent RNA polymerase (RdRp) for the replication of its genome and the transcription of its genes1-3. Here we present a cryo-electron microscopy structure of the SARS-CoV-2 RdRp in an active form that mimics the replicating enzyme. The structure comprises the viral proteins non-structural protein 12 (nsp12), nsp8 and nsp7, and more than two turns of RNA template-product duplex. The active-site cleft of nsp12 binds to the first turn of RNA and mediates RdRp activity with conserved residues. Two copies of nsp8 bind to opposite sides of the cleft and position the second turn of RNA. Long helical extensions in nsp8 protrude along exiting RNA, forming positively charged 'sliding poles'. These sliding poles can account for the known processivity of RdRp that is required for replicating the long genome of coronaviruses3. Our results enable a detailed analysis of the inhibitory mechanisms that underlie the antiviral activity of substances such as remdesivir, a drug for the treatment of coronavirus disease 2019 (COVID-19)4."],["dc.identifier.doi","10.1038/s41586-020-2368-8"],["dc.identifier.pmid","32438371"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/100148"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/44"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/22"],["dc.language.iso","en"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.eissn","1476-4687"],["dc.relation.issn","0028-0836"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.relation.workinggroup","RG Cramer"],["dc.title","Structure of replicating SARS-CoV-2 polymerase"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC