Options
Kutschka, Ingo
Loading...
Preferred name
Kutschka, Ingo
Official Name
Kutschka, Ingo
Alternative Name
Kutschka, I.
Main Affiliation
Now showing 1 - 2 of 2
2018Journal Article [["dc.bibliographiccitation.artnumber","e0192652"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","PLOS ONE"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Dahlmann, Julia"],["dc.contributor.author","Awad, George"],["dc.contributor.author","Dolny, Carsten"],["dc.contributor.author","Weinert, Sönke"],["dc.contributor.author","Richter, Karin"],["dc.contributor.author","Fischer, Klaus-Dieter"],["dc.contributor.author","Munsch, Thomas"],["dc.contributor.author","Leßmann, Volkmar"],["dc.contributor.author","Volleth, Marianne"],["dc.contributor.author","Zenker, Martin"],["dc.contributor.author","Chen, Yaoyao"],["dc.contributor.author","Merkl, Claudia"],["dc.contributor.author","Schnieke, Angelika"],["dc.contributor.author","Baraki, Hassina"],["dc.contributor.author","Kutschka, Ingo"],["dc.contributor.author","Kensah, George"],["dc.date.accessioned","2019-07-09T11:45:08Z"],["dc.date.available","2019-07-09T11:45:08Z"],["dc.date.issued","2018"],["dc.description.abstract","The possibility to generate cardiomyocytes from pluripotent stem cells in vitro has enormous significance for basic research, disease modeling, drug development and heart repair. The concept of heart muscle reconstruction has been studied and optimized in the rat model using rat primary cardiovascular cells or xenogeneic pluripotent stem cell derived-cardiomyocytes for years. However, the lack of rat pluripotent stem cells (rPSCs) and their cardiovascular derivatives prevented the establishment of an authentic clinically relevant syngeneic or allogeneic rat heart regeneration model. In this study, we comparatively explored the potential of recently available rat embryonic stem cells (rESCs) and induced pluripotent stem cells (riPSCs) as a source for cardiomyocytes (CMs). We developed feeder cell-free culture conditions facilitating the expansion of undifferentiated rPSCs and initiated cardiac differentiation by embryoid body (EB)-formation in agarose microwell arrays, which substituted the robust but labor-intensive hanging drop (HD) method. Ascorbic acid was identified as an efficient enhancer of cardiac differentiation in both rPSC types by significantly increasing the number of beating EBs (3.6 ± 1.6-fold for rESCs and 17.6 ± 3.2-fold for riPSCs). These optimizations resulted in a differentiation efficiency of up to 20% cTnTpos rPSC-derived CMs. CMs showed spontaneous contractions, expressed cardiac markers and had typical morphological features. Electrophysiology of riPSC-CMs revealed different cardiac subtypes and physiological responses to cardio-active drugs. In conclusion, we describe rPSCs as a robust source of CMs, which is a prerequisite for detailed preclinical studies of myocardial reconstruction in a physiologically and immunologically relevant small animal model."],["dc.identifier.doi","10.1371/journal.pone.0192652"],["dc.identifier.pmid","29513687"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15042"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59166"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/241504/EU//EURATRANS"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Generation of functional cardiomyocytes from rat embryonic and induced pluripotent stem cells using feeder-free expansion and differentiation in suspension culture."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018-07-13Research Data Research Paper [["dc.bibliographiccitation.artnumber","1227"],["dc.bibliographiccitation.journal","Frontiers in Physiology"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Pawlowitz, Jan"],["dc.contributor.author","Lehnart, Stephan Elmar"],["dc.contributor.author","Fakuade, Funsho E."],["dc.contributor.author","Kownatzki-Danger, Daniel"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Mitronova, Gyuzel Y."],["dc.contributor.author","Scardigli, Marina"],["dc.contributor.author","Neef, Jakob"],["dc.contributor.author","Schmidt, Constanze"],["dc.contributor.author","Wiedmann, Felix"],["dc.contributor.author","Pavone, Francesco S."],["dc.contributor.author","Sacconi, Leonardo"],["dc.contributor.author","Kutschka, Ingo"],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Moser, Tobias"],["dc.contributor.author","Voigt, Niels"],["dc.date.accessioned","2022-05-13T09:20:22Z"],["dc.date.available","2022-05-13T09:20:22Z"],["dc.date.issued","2018-07-13"],["dc.description.abstract","Rationale: Recently, abundant axial tubule (AT) membrane structures were identified deep inside atrial myocytes (AMs). Upon excitation, ATs rapidly activate intracellular Ca2+ release and sarcomeric contraction through extensive AT junctions, a cell-specific atrial mechanism. While AT junctions with the sarcoplasmic reticulum contain unusually large clusters of ryanodine receptor 2 (RyR2) Ca2+ release channels in mouse AMs, it remains unclear if similar protein networks and membrane structures exist across species, particularly those relevant for atrial disease modeling. Objective: To examine and quantitatively analyze the architecture of AT membrane structures and associated Ca2+ signaling proteins across species from mouse to human. Methods and Results: We developed superresolution microscopy (nanoscopy) strategies for intact live AMs based on a new custom-made photostable cholesterol dye and immunofluorescence imaging of membraneous structures and membrane proteins in fixed tissue sections from human, porcine, and rodent atria. Consistently, in mouse, rat, and rabbit AMs, intact cell-wide tubule networks continuous with the surface membrane were observed, mainly composed of ATs. Moreover, co-immunofluorescence nanoscopy showed L-type Ca2+ channel clusters adjacent to extensive junctional RyR2 clusters at ATs. However, only junctional RyR2 clusters were highly phosphorylated and may thus prime Ca2+ release at ATs, locally for rapid signal amplification. While the density of the integrated L-type Ca2+ current was similar in human and mouse AMs, the intracellular Ca2+ transient showed quantitative differences. Importantly, local intracellular Ca2+ release from AT junctions occurred through instantaneous action potential propagation via transverse tubules (TTs) from the surface membrane. Hence, sparse TTs were sufficient as electrical conduits for rapid activation of Ca2+ release through ATs. Nanoscopy of atrial tissue sections confirmed abundant ATs as the major network component of AMs, particularly in human atrial tissue sections. Conclusion: AT junctions represent a conserved, cell-specific membrane structure for rapid excitation-contraction coupling throughout a representative spectrum of species including human. Since ATs provide the major excitable membrane network component in AMs, a new model of atrial \"super-hub\" Ca2+ signaling may apply across biomedically relevant species, opening avenues for future investigations about atrial disease mechanisms and therapeutic targeting."],["dc.identifier.doi","10.3389/fphys.2018.01227"],["dc.identifier.pmid","30349482"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15400"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/107860"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/217"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A05: Molekulares Imaging von kardialen Calcium-Freisetzungsdomänen"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation","SFB 1002 | S02: Hochauflösende Fluoreszenzmikroskopie und integrative Datenanalyse"],["dc.relation","SFB 1002 | A13: Bedeutung einer gestörten zytosolischen Calciumpufferung bei der atrialen Arrhythmogenese bei Patienten mit Herzinsuffizienz (HF)"],["dc.relation.eissn","1664-042X"],["dc.relation.workinggroup","RG Brandenburg"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Sossalla (Kardiovaskuläre experimentelle Elektrophysiologie und Bildgebung)"],["dc.relation.workinggroup","RG Voigt (Molecular Pharmacology)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Axial Tubule Junctions Activate Atrial Ca2+ Release across Species"],["dc.type","research_data"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC