Now showing 1 - 10 of 17
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e9561"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","EMBO Molecular Medicine"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Mohanraj, Karthik"],["dc.contributor.author","Wasilewski, Michal"],["dc.contributor.author","Benincá, Cristiane"],["dc.contributor.author","Cysewski, Dominik"],["dc.contributor.author","Poznanski, Jaroslaw"],["dc.contributor.author","Sakowska, Paulina"],["dc.contributor.author","Bugajska, Zaneta"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Fernandez‐Vizarra, Erika"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dadlez, Michal"],["dc.contributor.author","Zeviani, Massimo"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.date.accessioned","2019-07-09T11:51:37Z"],["dc.date.available","2019-07-09T11:51:37Z"],["dc.date.issued","2019"],["dc.description.abstract","Nuclear and mitochondrial genome mutations lead to various mitochondrial diseases, many of which affect the mitochondrial respiratory chain. The proteome of the intermembrane space (IMS) of mitochondria consists of several important assembly factors that participate in the biogenesis of mitochondrial respiratory chain complexes. The present study comprehensively analyzed a recently identified IMS protein cytochrome c oxidase assembly factor 7 (COA7), or RESpiratory chain Assembly 1 (RESA1) factor that is associated with a rare form of mitochondrial leukoencephalopathy and complex IV deficiency. We found that COA7 requires the mitochondrial IMS import and assembly (MIA) pathway for efficient accumulation in the IMS. We also found that pathogenic mutant versions of COA7 are imported slower than the wild‐type protein, and mislocalized proteins are degraded in the cytosol by the proteasome. Interestingly, proteasome inhibition rescued both the mitochondrial localization of COA7 and complex IV activity in patient‐derived fibroblasts. We propose proteasome inhibition as a novel therapeutic approach for a broad range of mitochondrial pathologies associated with the decreased levels of mitochondrial proteins."],["dc.identifier.doi","10.15252/emmm.201809561"],["dc.identifier.pmid","30885959"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16155"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59974"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/64"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/322424/EU//MITCARE"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/339580/EU//MITRAC"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","540"],["dc.title","Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2010Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","141"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","154"],["dc.bibliographiccitation.volume","191"],["dc.contributor.author","Mick, David U."],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Piechura, Heike"],["dc.contributor.author","Meyer, Helmut E."],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:45:15Z"],["dc.date.available","2017-09-07T11:45:15Z"],["dc.date.issued","2010"],["dc.description.abstract","Regulation of eukaryotic cytochrome oxidase assembly occurs at the level of Cox1 translation, its central mitochondria-encoded subunit. Translation of COX1 messenger RNA is coupled to complex assembly in a negative feedback loop: the translational activator Mss51 is thought to be sequestered to assembly intermediates, rendering it incompetent to promote translation. In this study, we identify Coa3 (cytochrome oxidase assembly factor 3; Yjl062w-A), a novel regulator of mitochondrial COX1 translation and cytochrome oxidase assembly. We show that Coa3 and Cox14 form assembly intermediates with newly synthesized Cox1 and are required for Mss51 association with these complexes. Mss51 exists in equilibrium between a latent, translational resting, and a committed, translation-effective, state that are represented as distinct complexes. Coa3 and Cox14 promote formation of the latent state and thus down-regulate COX1 expression. Consequently, lack of Coa3 or Cox14 function traps Mss51 in the committed state and promotes Cox1 synthesis. Our data indicate that Coa1 binding to sequestered Mss51 in complex with Cox14, Coa3, and Cox1 is essential for full inactivation."],["dc.identifier.doi","10.1083/jcb.201007026"],["dc.identifier.gro","3142844"],["dc.identifier.isi","000282648500014"],["dc.identifier.pmid","20876281"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6311"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/293"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Rockefeller Univ Press"],["dc.relation.issn","0021-9525"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Coa3 and Cox14 are essential for negative feedback regulation of COX1 translation in mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1457"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","1466"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Lupo, Domenico"],["dc.contributor.author","Vollmer, Christine"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Mick, David U."],["dc.contributor.author","Tews, Ivo"],["dc.contributor.author","Sinning, Irmgard"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:43:24Z"],["dc.date.available","2017-09-07T11:43:24Z"],["dc.date.issued","2011"],["dc.description.abstract","Mitochondrial ribosomes synthesize core subunits of the inner membrane respiratory chain complexes. In mitochondria, translation is regulated by mRNA-specific activator proteins and occurs on membrane-associated ribosomes. Mdm38/Letm1 is a conserved membrane receptor for mitochondrial ribosomes and specifically involved in respiratory chain biogenesis. In addition, Mdm38 and its higher eukaryotic homolog Letm1, function as K+/H+ or Ca2+/H+ antiporters in the inner membrane. Here, we identify the conserved ribosome-binding domain (RBD) of Mdm38 and determine the crystal structure at 2.1 angstrom resolution. Surprisingly, Mdm38(RBD) displays a 14-3-3-like fold despite any similarity to 14-3-3-proteins at the primary sequence level and thus represents the first 14-3-3-like protein in mitochondria. The 14-3-3-like domain is critical for respiratory chain assembly through regulation of Cox1 and Cytb translation. We show that this function can be spatially separated from the ion transport activity of the membrane integrated portion of Mdm38. On the basis of the phenotypes observed for mdm38 Delta as compared to Mdm38 lacking the RBD, we suggest a model that combining ion transport and translational regulation into one molecule allows for direct coupling of ion flux across the inner membrane, and serves as a signal for the translation of mitochondrial membrane proteins via its direct association with the protein synthesis machinery."],["dc.identifier.doi","10.1111/j.1600-0854.2011.01239.x"],["dc.identifier.gro","3142664"],["dc.identifier.isi","000295052500017"],["dc.identifier.pmid","21718401"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/93"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: DFG [FOR967]; Max-Planck Society"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1600-0854"],["dc.relation.issn","1398-9219"],["dc.title","Mdm38 is a 14-3-3-Like Receptor and Associates with the Protein Synthesis Machinery at the Inner Mitochondrial Membrane"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Conference Abstract
    [["dc.bibliographiccitation.firstpage","209"],["dc.bibliographiccitation.journal","FEBS Journal"],["dc.bibliographiccitation.lastpage","210"],["dc.bibliographiccitation.volume","282"],["dc.contributor.author","Heininger, A. U."],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Andreou, Alexandra-Zoi"],["dc.contributor.author","Boon, K.-L."],["dc.contributor.author","Prior, M."],["dc.contributor.author","Schmidt, B."],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Sloan, Katherine E."],["dc.contributor.author","Schleiff, Enrico"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Lührmann, Reinhard"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Klostermeier, Dagmar"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2018-11-07T09:54:51Z"],["dc.date.available","2018-11-07T09:54:51Z"],["dc.date.issued","2015"],["dc.identifier.isi","000362570603174"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36625"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.eventlocation","Berlin, GERMANY"],["dc.relation.issn","1742-4658"],["dc.relation.issn","1742-464X"],["dc.title","Sequestering and protein cofactor competition regulate a multifunctional RNA helicase in different pathways"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","33314"],["dc.bibliographiccitation.issue","40"],["dc.bibliographiccitation.journal","Journal of biological chemistry"],["dc.bibliographiccitation.lastpage","33326"],["dc.bibliographiccitation.volume","287"],["dc.contributor.author","Krüger, Vivien"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Hildenbeutel, Markus"],["dc.contributor.author","van der Laan, Martin"],["dc.contributor.author","Hellmers, Maike"],["dc.contributor.author","Dreker, Christina"],["dc.contributor.author","Preuss, Marc"],["dc.contributor.author","Herrmann, Johannes M."],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Wagner, Richard"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2017-09-07T11:48:24Z"],["dc.date.available","2017-09-07T11:48:24Z"],["dc.date.issued","2012"],["dc.description.abstract","The inner membrane of mitochondria is especially protein-rich. To direct proteins into the inner membrane, translocases mediate transport and membrane insertion of precursor proteins. Although the majority of mitochondrial proteins are imported from the cytoplasm, core subunits of respiratory chain complexes are inserted into the inner membrane from the matrix. Oxa1, a conserved membrane protein, mediates the insertion of mitochondrion-encoded precursors into the inner mitochondrial membrane. The molecular mechanism by which Oxa1 mediates insertion of membrane spans, entailing the translocation of hydrophilic domains across the inner membrane, is still unknown. We investigated if Oxa1 could act as a protein-conducting channel for precursor transport. Using a biophysical approach, we show that Oxa1 can form a pore capable of accommodating a translocating protein segment. After purification and reconstitution, Oxa1 acts as a cation-selective channel that specifically responds to mitochondrial export signals. The aqueous pore formed by Oxa1 displays highly dynamic characteristics with a restriction zone diameter between 0.6 and 2 nm, which would suffice for polypeptide translocation across the membrane. Single channel analyses revealed four discrete channels per active unit, suggesting that the Oxa1 complex forms several cooperative hydrophilic pores in the inner membrane. Hence, Oxa1 behaves as a pore-forming translocase that is regulated in a membrane potential and substrate-dependent manner."],["dc.identifier.doi","10.1074/jbc.M112.387563"],["dc.identifier.gro","3142462"],["dc.identifier.isi","000309602100020"],["dc.identifier.pmid","22829595"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8551"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0021-9258"],["dc.title","The Mitochondrial Oxidase Assembly Protein1 (Oxa1) Insertase Forms a Membrane Pore in Lipid Bilayers"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1624"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta (BBA) - Molecular Cell Research"],["dc.bibliographiccitation.lastpage","1632"],["dc.bibliographiccitation.volume","1863"],["dc.contributor.author","Levchenko, Maria"],["dc.contributor.author","Wuttke, Jan-Moritz"],["dc.contributor.author","Römpler, Katharina"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Neifer, Klaus"],["dc.contributor.author","Juris, Lisa"],["dc.contributor.author","Wissel, Mirjam"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2017-09-07T11:44:49Z"],["dc.date.available","2017-09-07T11:44:49Z"],["dc.date.issued","2016"],["dc.description.abstract","The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Coxl, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc(1)-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization. (C) 2016 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.bbamcr.2016.04.007"],["dc.identifier.gro","3141656"],["dc.identifier.isi","000378360200015"],["dc.identifier.pmid","27083394"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6009"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","0006-3002"],["dc.relation.issn","0167-4889"],["dc.title","Cox26 is a novel stoichiometric subunit of the yeast cytochrome c oxidase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.issue","14"],["dc.bibliographiccitation.journal","The EMBO Journal"],["dc.bibliographiccitation.volume","39"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Brüser, Christian"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Steyer, Anna M."],["dc.contributor.author","Balzarotti, Francisco"],["dc.contributor.author","Barbot, Mariam"],["dc.contributor.author","Behr, Tiana S."],["dc.contributor.author","Heim, Gudrun"],["dc.contributor.author","Hübner, Wolfgang"],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Lange, Felix"],["dc.contributor.author","Pacheu‐Grau, David"],["dc.contributor.author","Pape, Jasmin K."],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Huser, Thomas"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2021-04-14T08:25:12Z"],["dc.date.available","2021-04-14T08:25:12Z"],["dc.date.issued","2020"],["dc.description.abstract","Mitochondrial function is critically dependent on the folding of the mitochondrial inner membrane into cristae; indeed, numerous human diseases are associated with aberrant crista morphologies. With the MICOS complex, OPA1 and the F1Fo-ATP synthase, key players of cristae biogenesis have been identified, yet their interplay is poorly understood. Harnessing super-resolution light and 3D electron microscopy, we dissect the roles of these proteins in the formation of cristae in human mitochondria. We individually disrupted the genes of all seven MICOS subunits in human cells and re-expressed Mic10 or Mic60 in the respective knockout cell line. We demonstrate that assembly of the MICOS complex triggers remodeling of pre-existing unstructured cristae and de novo formation of crista junctions (CJs) on existing cristae. We show that the Mic60-subcomplex is sufficient for CJ formation, whereas the Mic10-subcomplex controls lamellar cristae biogenesis. OPA1 stabilizes tubular CJs and, along with the F1Fo-ATP synthase, fine-tunes the positioning of the MICOS complex and CJs. We propose a new model of cristae formation, involving the coordinated remodeling of an unstructured crista precursor into multiple lamellar cristae."],["dc.identifier.doi","10.15252/embj.2019104105"],["dc.identifier.pmid","32567732"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81550"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/51"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/115"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/25"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P04: Analyse der räumlichen Organisation der OXPHOS Assemblierung in Säugerzellen"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.relation.workinggroup","RG Hell"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Möbius"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Riedel"],["dc.rights","CC BY 4.0"],["dc.title","MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","823"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Cell Metabolism"],["dc.bibliographiccitation.lastpage","833"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Bareth, Bettina"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Juris, Lisa"],["dc.contributor.author","Vögtle, F. Nora"],["dc.contributor.author","Wissel, Mirjam"],["dc.contributor.author","Leary, Scot C."],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2017-09-07T11:43:47Z"],["dc.date.available","2017-09-07T11:43:47Z"],["dc.date.issued","2015"],["dc.description.abstract","Three mitochondria-encoded subunits form the catalytic core of cytochrome c oxidase, the terminal enzyme of the respiratory chain. COX1 and COX2 contain heme and copper redox centers, which are integrated during assembly of the enzyme. Defects in this process lead to an enzyme deficiency and manifest as mitochondrial disorders in humans. Here we demonstrate that COA6 is specifically required for COX2 biogenesis. Absence of COA6 leads to fast turnover of newly synthesized COX2 and a concomitant reduction in cytochrome c oxidase levels. COA6 interacts transiently with the copper-containing catalytic domain of newly synthesized COX2. Interestingly, similar to the copper metallochaperone SCO2, loss of COA6 causes cardiomyopathy in humans. We show that COA6 and SCO2 interact and that corresponding pathogenic mutations in each protein affect complex formation. Our analyses define COA6 as a constituent of the mitochondrial copper relay system, linking defects in COX2 metallation to cardiac cytochrome c oxidase deficiency."],["dc.identifier.doi","10.1016/j.cmet.2015.04.012"],["dc.identifier.gro","3141890"],["dc.identifier.isi","000355673700007"],["dc.identifier.pmid","25959673"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2211"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/131"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation.eissn","1932-7420"],["dc.relation.issn","1550-4131"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.title","Cooperation between COA6 and SCO2 in COX2 Maturation during Cytochrome c Oxidase Assembly Links Two Mitochondrial Cardiomyopathies"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1624"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","1727"],["dc.bibliographiccitation.volume","33"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Naumenko, Nataliia"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","von der Malsburg, Karina"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","van der Laan, Martin"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:45:41Z"],["dc.date.available","2017-09-07T11:45:41Z"],["dc.date.issued","2014"],["dc.description.abstract","Mitochondrial F1Fo-ATP synthase generates the bulk of cellular ATP. This molecular machine assembles from nuclear- and mitochondria-encoded subunits. Whereas chaperones for formation of the matrix-exposed hexameric F-1-ATPase core domain have been identified, insight into how the nuclear-encoded F-1-domain assembles with the membrane-embedded F-o-region is lacking. Here we identified the INA complex (INAC) in the inner membrane of mitochondria as an assembly factor involved in this process. Ina22 and Ina17 are INAC constituents that physically associate with the F-1-module and peripheral stalk, but not with the assembled F1Fo-ATP synthase. Our analyses show that loss of Ina22 and Ina17 specifically impairs formation of the peripheral stalk that connects the catalytic F-1-module to the membrane embedded F-o-domain. We conclude that INAC represents a matrix-exposed inner membrane protein complex that facilitates peripheral stalk assembly and thus promotes a key step in the biogenesis of mitochondrial F1Fo-ATP synthase."],["dc.identifier.doi","10.15252/embj.201488076"],["dc.identifier.gro","3142082"],["dc.identifier.isi","000339917000005"],["dc.identifier.pmid","24942160"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4345"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.title","The INA complex facilitates assembly of the peripheral stalk of the mitochondrial F1Fo-ATP synthase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1161"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Molecular & Cellular Proteomics"],["dc.bibliographiccitation.lastpage","1178"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Parfentev, Iwan"],["dc.contributor.author","Pflanz, Ralf"],["dc.contributor.author","Homberg, Bettina"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Ficner, Ralf"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Urlaub, Henning"],["dc.date.accessioned","2021-04-14T08:24:20Z"],["dc.date.available","2021-04-14T08:24:20Z"],["dc.date.issued","2020"],["dc.description.abstract","Protein cross-linking and the analysis of cross-linked peptides by mass spectrometry is currently receiving much attention. Not only is this approach applied to isolated complexes to provide information about spatial arrangements of proteins, but it is also increasingly applied to entire cells and their organelles. As in quantitative proteomics, the application of isotopic labeling further makes it possible to monitor quantitative changes in the protein-protein interactions between different states of a system. Here, we cross-linked mitochondria from Saccharomyces cerevisiae grown on either glycerol- or glucose-containing medium to monitor protein-protein interactions under non-fermentative and fermentative conditions. We investigated qualitatively the protein-protein interactions of the 400 most abundant proteins applying stringent data-filtering criteria, i.e. a minimum of two cross-linked peptide spectrum matches and a cut-off in the spectrum scoring of the used search engine. The cross-linker BS3 proved to be equally suited for connecting proteins in all compartments of mitochondria when compared with its water-insoluble but membrane-permeable derivative DSS. We also applied quantitative cross-linking to mitochondria of both the growth conditions using stable-isotope labeled BS3. Significant differences of cross-linked proteins under glycerol and glucose conditions were detected, however, mainly because of the different copy numbers of these proteins in mitochondria under both the conditions. Results obtained from the glycerol condition indicate that the internal NADH:ubiquinone oxidoreductase Ndi1 is part of an electron transport chain supercomplex. We have also detected several hitherto uncharacterized proteins and identified their interaction partners. Among those, Min8 was found to be associated with cytochrome c oxidase. BN-PAGE analyses of min8Δ mitochondria suggest that Min8 promotes the incorporation of Cox12 into cytochrome c oxidase."],["dc.identifier.doi","10.1074/mcp.RA120.002028"],["dc.identifier.pmid","33451406"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81250"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/188"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/134"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation.issn","1535-9476"],["dc.relation.workinggroup","RG Ficner (Molecular Structural Biology)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","CC BY 4.0"],["dc.title","A Cross-linking Mass Spectrometry Approach Defines Protein Interactions in Yeast Mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC