Now showing 1 - 10 of 15
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","23769"],["dc.bibliographiccitation.issue","45"],["dc.bibliographiccitation.journal","Journal of Biological Chemistry"],["dc.bibliographiccitation.lastpage","23778"],["dc.bibliographiccitation.volume","291"],["dc.contributor.author","Römpler, Katharina"],["dc.contributor.author","Müller, Tobias"],["dc.contributor.author","Juris, Lisa"],["dc.contributor.author","Wissel, Mirjam"],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Hofmann, Kay"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2020-12-10T18:12:56Z"],["dc.date.available","2020-12-10T18:12:56Z"],["dc.date.issued","2016"],["dc.description.abstract","The mitochondrial electron transport chain consists of individual protein complexes arranged into large macromolecular structures, termed respiratory chain supercomplexes or respirasomes. In the yeast Saccharomyces cerevisiae, respiratory chain supercomplexes form by association of the bc(1) complex with the cytochrome c oxidase. Formation and maintenance of these assemblies are promoted by specific respiratory supercomplex factors, the Rcf proteins. For these proteins a regulatory function in bridging the electron transfer within supercomplexes has been proposed. Here we report on the maturation of Rcf2 into an N- and C-terminal peptide. We show that the previously uncharacterized Rcf3 (YBR255c-A) is a homolog of the N-terminal Rcf2 peptide, whereas Rcf1 is homologous to the C-terminal portion. Both Rcf3 and the C-terminal fragment of Rcf2 associate with monomeric cytochrome c oxidase and respiratory chain supercomplexes. A lack of Rcf2 and Rcf3 increases oxygen flux through the respiratory chain by up-regulation of the cytochrome c oxidase activity. A double gene deletion of RCF2 and RCF3 affects cellular survival under non-fermentable growth conditions, suggesting an overlapping role for both proteins in the regulation of the OXPHOS activity. Furthermore, our data suggest an association of all three Rcf proteins with the bc(1) complex in the absence of a functional cytochrome c oxidase and identify a supercomplex independent interaction network of the Rcf proteins."],["dc.identifier.doi","10.1074/jbc.M116.734665"],["dc.identifier.eissn","1083-351X"],["dc.identifier.isi","000387884400036"],["dc.identifier.issn","0021-9258"],["dc.identifier.pmid","27662906"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74539"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Biochemistry Molecular Biology Inc"],["dc.relation.issn","1083-351X"],["dc.relation.issn","0021-9258"],["dc.title","Overlapping Role of Respiratory Supercomplex Factor Rcf2 and Its N-terminal Homolog Rcf3 in Saccharomyces cerevisiae"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1457"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","1466"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Lupo, Domenico"],["dc.contributor.author","Vollmer, Christine"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Mick, David U."],["dc.contributor.author","Tews, Ivo"],["dc.contributor.author","Sinning, Irmgard"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:43:24Z"],["dc.date.available","2017-09-07T11:43:24Z"],["dc.date.issued","2011"],["dc.description.abstract","Mitochondrial ribosomes synthesize core subunits of the inner membrane respiratory chain complexes. In mitochondria, translation is regulated by mRNA-specific activator proteins and occurs on membrane-associated ribosomes. Mdm38/Letm1 is a conserved membrane receptor for mitochondrial ribosomes and specifically involved in respiratory chain biogenesis. In addition, Mdm38 and its higher eukaryotic homolog Letm1, function as K+/H+ or Ca2+/H+ antiporters in the inner membrane. Here, we identify the conserved ribosome-binding domain (RBD) of Mdm38 and determine the crystal structure at 2.1 angstrom resolution. Surprisingly, Mdm38(RBD) displays a 14-3-3-like fold despite any similarity to 14-3-3-proteins at the primary sequence level and thus represents the first 14-3-3-like protein in mitochondria. The 14-3-3-like domain is critical for respiratory chain assembly through regulation of Cox1 and Cytb translation. We show that this function can be spatially separated from the ion transport activity of the membrane integrated portion of Mdm38. On the basis of the phenotypes observed for mdm38 Delta as compared to Mdm38 lacking the RBD, we suggest a model that combining ion transport and translational regulation into one molecule allows for direct coupling of ion flux across the inner membrane, and serves as a signal for the translation of mitochondrial membrane proteins via its direct association with the protein synthesis machinery."],["dc.identifier.doi","10.1111/j.1600-0854.2011.01239.x"],["dc.identifier.gro","3142664"],["dc.identifier.isi","000295052500017"],["dc.identifier.pmid","21718401"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/93"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: DFG [FOR967]; Max-Planck Society"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1600-0854"],["dc.relation.issn","1398-9219"],["dc.title","Mdm38 is a 14-3-3-Like Receptor and Associates with the Protein Synthesis Machinery at the Inner Mitochondrial Membrane"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2021Journal Article
    [["dc.bibliographiccitation.artnumber","S0167488921001877"],["dc.bibliographiccitation.firstpage","119133"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta. Molecular Cell Research"],["dc.bibliographiccitation.volume","1868"],["dc.contributor.author","Homberg, Bettina"],["dc.contributor.author","Römpler, Katharina"],["dc.contributor.author","Wissel, Mirjam"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2021-09-01T06:42:57Z"],["dc.date.available","2021-09-01T06:42:57Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1016/j.bbamcr.2021.119133"],["dc.identifier.pii","S0167488921001877"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89186"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-455"],["dc.relation.issn","0167-4889"],["dc.title","Rcf proteins and their differential specificity for respiratory chain complexes: A unique role for Rcf2 on oxygen sensitive supercomplexes?"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Conference Abstract
    [["dc.bibliographiccitation.firstpage","209"],["dc.bibliographiccitation.journal","FEBS Journal"],["dc.bibliographiccitation.lastpage","210"],["dc.bibliographiccitation.volume","282"],["dc.contributor.author","Heininger, A. U."],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Andreou, Alexandra-Zoi"],["dc.contributor.author","Boon, K.-L."],["dc.contributor.author","Prior, M."],["dc.contributor.author","Schmidt, B."],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Sloan, Katherine E."],["dc.contributor.author","Schleiff, Enrico"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Lührmann, Reinhard"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Klostermeier, Dagmar"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2018-11-07T09:54:51Z"],["dc.date.available","2018-11-07T09:54:51Z"],["dc.date.issued","2015"],["dc.identifier.isi","000362570603174"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36625"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.eventlocation","Berlin, GERMANY"],["dc.relation.issn","1742-4658"],["dc.relation.issn","1742-464X"],["dc.title","Sequestering and protein cofactor competition regulate a multifunctional RNA helicase in different pathways"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","33314"],["dc.bibliographiccitation.issue","40"],["dc.bibliographiccitation.journal","Journal of biological chemistry"],["dc.bibliographiccitation.lastpage","33326"],["dc.bibliographiccitation.volume","287"],["dc.contributor.author","Krüger, Vivien"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Hildenbeutel, Markus"],["dc.contributor.author","van der Laan, Martin"],["dc.contributor.author","Hellmers, Maike"],["dc.contributor.author","Dreker, Christina"],["dc.contributor.author","Preuss, Marc"],["dc.contributor.author","Herrmann, Johannes M."],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Wagner, Richard"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2017-09-07T11:48:24Z"],["dc.date.available","2017-09-07T11:48:24Z"],["dc.date.issued","2012"],["dc.description.abstract","The inner membrane of mitochondria is especially protein-rich. To direct proteins into the inner membrane, translocases mediate transport and membrane insertion of precursor proteins. Although the majority of mitochondrial proteins are imported from the cytoplasm, core subunits of respiratory chain complexes are inserted into the inner membrane from the matrix. Oxa1, a conserved membrane protein, mediates the insertion of mitochondrion-encoded precursors into the inner mitochondrial membrane. The molecular mechanism by which Oxa1 mediates insertion of membrane spans, entailing the translocation of hydrophilic domains across the inner membrane, is still unknown. We investigated if Oxa1 could act as a protein-conducting channel for precursor transport. Using a biophysical approach, we show that Oxa1 can form a pore capable of accommodating a translocating protein segment. After purification and reconstitution, Oxa1 acts as a cation-selective channel that specifically responds to mitochondrial export signals. The aqueous pore formed by Oxa1 displays highly dynamic characteristics with a restriction zone diameter between 0.6 and 2 nm, which would suffice for polypeptide translocation across the membrane. Single channel analyses revealed four discrete channels per active unit, suggesting that the Oxa1 complex forms several cooperative hydrophilic pores in the inner membrane. Hence, Oxa1 behaves as a pore-forming translocase that is regulated in a membrane potential and substrate-dependent manner."],["dc.identifier.doi","10.1074/jbc.M112.387563"],["dc.identifier.gro","3142462"],["dc.identifier.isi","000309602100020"],["dc.identifier.pmid","22829595"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8551"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0021-9258"],["dc.title","The Mitochondrial Oxidase Assembly Protein1 (Oxa1) Insertase Forms a Membrane Pore in Lipid Bilayers"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1624"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta (BBA) - Molecular Cell Research"],["dc.bibliographiccitation.lastpage","1632"],["dc.bibliographiccitation.volume","1863"],["dc.contributor.author","Levchenko, Maria"],["dc.contributor.author","Wuttke, Jan-Moritz"],["dc.contributor.author","Römpler, Katharina"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Neifer, Klaus"],["dc.contributor.author","Juris, Lisa"],["dc.contributor.author","Wissel, Mirjam"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2017-09-07T11:44:49Z"],["dc.date.available","2017-09-07T11:44:49Z"],["dc.date.issued","2016"],["dc.description.abstract","The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Coxl, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc(1)-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization. (C) 2016 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.bbamcr.2016.04.007"],["dc.identifier.gro","3141656"],["dc.identifier.isi","000378360200015"],["dc.identifier.pmid","27083394"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6009"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","0006-3002"],["dc.relation.issn","0167-4889"],["dc.title","Cox26 is a novel stoichiometric subunit of the yeast cytochrome c oxidase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","823"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Cell Metabolism"],["dc.bibliographiccitation.lastpage","833"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Bareth, Bettina"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Juris, Lisa"],["dc.contributor.author","Vögtle, F. Nora"],["dc.contributor.author","Wissel, Mirjam"],["dc.contributor.author","Leary, Scot C."],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2017-09-07T11:43:47Z"],["dc.date.available","2017-09-07T11:43:47Z"],["dc.date.issued","2015"],["dc.description.abstract","Three mitochondria-encoded subunits form the catalytic core of cytochrome c oxidase, the terminal enzyme of the respiratory chain. COX1 and COX2 contain heme and copper redox centers, which are integrated during assembly of the enzyme. Defects in this process lead to an enzyme deficiency and manifest as mitochondrial disorders in humans. Here we demonstrate that COA6 is specifically required for COX2 biogenesis. Absence of COA6 leads to fast turnover of newly synthesized COX2 and a concomitant reduction in cytochrome c oxidase levels. COA6 interacts transiently with the copper-containing catalytic domain of newly synthesized COX2. Interestingly, similar to the copper metallochaperone SCO2, loss of COA6 causes cardiomyopathy in humans. We show that COA6 and SCO2 interact and that corresponding pathogenic mutations in each protein affect complex formation. Our analyses define COA6 as a constituent of the mitochondrial copper relay system, linking defects in COX2 metallation to cardiac cytochrome c oxidase deficiency."],["dc.identifier.doi","10.1016/j.cmet.2015.04.012"],["dc.identifier.gro","3141890"],["dc.identifier.isi","000355673700007"],["dc.identifier.pmid","25959673"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2211"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/131"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation.eissn","1932-7420"],["dc.relation.issn","1550-4131"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.title","Cooperation between COA6 and SCO2 in COX2 Maturation during Cytochrome c Oxidase Assembly Links Two Mitochondrial Cardiomyopathies"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1624"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","1727"],["dc.bibliographiccitation.volume","33"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Naumenko, Nataliia"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","von der Malsburg, Karina"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","van der Laan, Martin"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:45:41Z"],["dc.date.available","2017-09-07T11:45:41Z"],["dc.date.issued","2014"],["dc.description.abstract","Mitochondrial F1Fo-ATP synthase generates the bulk of cellular ATP. This molecular machine assembles from nuclear- and mitochondria-encoded subunits. Whereas chaperones for formation of the matrix-exposed hexameric F-1-ATPase core domain have been identified, insight into how the nuclear-encoded F-1-domain assembles with the membrane-embedded F-o-region is lacking. Here we identified the INA complex (INAC) in the inner membrane of mitochondria as an assembly factor involved in this process. Ina22 and Ina17 are INAC constituents that physically associate with the F-1-module and peripheral stalk, but not with the assembled F1Fo-ATP synthase. Our analyses show that loss of Ina22 and Ina17 specifically impairs formation of the peripheral stalk that connects the catalytic F-1-module to the membrane embedded F-o-domain. We conclude that INAC represents a matrix-exposed inner membrane protein complex that facilitates peripheral stalk assembly and thus promotes a key step in the biogenesis of mitochondrial F1Fo-ATP synthase."],["dc.identifier.doi","10.15252/embj.201488076"],["dc.identifier.gro","3142082"],["dc.identifier.isi","000339917000005"],["dc.identifier.pmid","24942160"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4345"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.title","The INA complex facilitates assembly of the peripheral stalk of the mitochondrial F1Fo-ATP synthase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2013Conference Abstract
    [["dc.bibliographiccitation.journal","Yeast"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2018-11-07T09:20:11Z"],["dc.date.available","2018-11-07T09:20:11Z"],["dc.date.issued","2013"],["dc.format.extent","56"],["dc.identifier.isi","000327927400063"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/28821"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.conference","26th International Conference on Yeast Genetics and Molecular Biology"],["dc.relation.eventlocation","Frankfurt Main, GERMANY"],["dc.relation.issn","1097-0061"],["dc.relation.issn","0749-503X"],["dc.title","Dynamics of respiratory chain complex organization during hypoxia"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","336"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Cell Metabolism"],["dc.bibliographiccitation.lastpage","347"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Wiese, Sebastian"],["dc.contributor.author","Vögtle, F. Nora"],["dc.contributor.author","Meisinger, Chris"],["dc.contributor.author","Meyer, Helmut E."],["dc.contributor.author","Zieseniss, Anke"],["dc.contributor.author","Katschinski, Doerthe M."],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2017-09-07T11:48:56Z"],["dc.date.available","2017-09-07T11:48:56Z"],["dc.date.issued","2012"],["dc.description.abstract","The terminal enzyme of the mitochondrial respiratory chain, cytochrome oxidase, transfers electrons to molecular oxygen, generating water. Within the inner mitochondrial membrane, cytochrome oxidase assembles into supercomplexes, together with other respiratory chain complexes, forming so-called respirasomes. Little is known about how these higher oligomeric structures are attained. Here we report on Rcf1 and Rcf2 as cytochrome oxidase subunits in S. cerevisiae. While Rcf2 is specific to yeast, Rcf1 is a conserved subunit with two human orthologs, RCF1a and RCF1b. Rcf1 is required for growth in hypoxia and complex assembly of subunits Cox13 and Rcf2, as well as for the oligomerization of a subclass of cytochrome oxidase complexes into respirasomes. Our analyses reveal that the cytochrome oxidase of mitochondria displays intrinsic heterogeneity with regard to its subunit composition and that distinct forms of respirasomes can be formed by complex variants."],["dc.identifier.doi","10.1016/j.cmet.2012.01.016"],["dc.identifier.gro","3142565"],["dc.identifier.isi","000301701400014"],["dc.identifier.pmid","22342701"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8930"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1550-4131"],["dc.title","Rcf1 Mediates Cytochrome Oxidase Assembly and Respirasome Formation, Revealing Heterogeneity of the Enzyme Complex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS