Options
Kliesch, Torben-Tobias
Loading...
Preferred name
Kliesch, Torben-Tobias
Official Name
Kliesch, Torben-Tobias
Alternative Name
Kliesch, T.-T.
Kliesch, Torben Tobias
Kliesch, T. T.
Now showing 1 - 3 of 3
2011Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1068"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","ACS Applied Materials & Interfaces"],["dc.bibliographiccitation.lastpage","1076"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Lazzara, Thomas D."],["dc.contributor.author","Kliesch, Torben-Tobias"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2017-09-07T11:44:17Z"],["dc.date.available","2017-09-07T11:44:17Z"],["dc.date.issued","2011"],["dc.description.abstract","Anodic aluminum oxide (AAO) membranes with aligned, cylindrical, nonintersecting pores were selectively fiinctionalized in order to create dual-functionality substrates with different pore-rim and pore-interior surface functionalities, using silane chemistry. We used a two-step process involving an evaporated thin gold film to protect the underlying surface functionality of the pore rims. Subsequent treatment with oxygen plasma of the modified AAO membrane removed the unprotected organic functional groups, i.e., the pore-interior surface. After gold removal, the substrate became optically transparent, and displayed two distinct surface functionalities, one at the pore-rim surface and another at the pore-interior surface. We achieved a selective hydrophobic functionalization with dodecyl-trichlorosilane of either the pore rims or the pore interiors. The deposition of planar lipid membranes on the functionalized areas by addition of small unilamellar vesicles occurred in a predetermined fashion. Small unilamellar vesicles only ruptured upon contact with the hydrophobic substrate regions forming solid supported hybrid bilayers. In addition, pore-rim functionalization with dodecyl-trichlorosilane allowed the formation of pore-spanning hybrid lipid membranes as a result of giant unilamellar vesicle rupture. Confocal laser scanning microscopy was employed to identify the selective spatial localization of the adsorbed fluorescently labeled lipids. The corresponding increase in the AAO refractive index due to lipid adsorption on the hydrophobic regions was monitored by optical waveguide spectroscopy. This simple orthogonal functionalization route is a promising method to control the three-dimensional surface functionality of nanoporous films."],["dc.identifier.doi","10.1021/am101212h"],["dc.identifier.gro","3142745"],["dc.identifier.isi","000289762400021"],["dc.identifier.pmid","21370818"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9425"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/183"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1944-8244"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Orthogonal Functionalization of Nanoporous Substrates: Control of 3D Surface Functionality"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","19953"],["dc.bibliographiccitation.issue","38"],["dc.bibliographiccitation.journal","The Journal of Biological Chemistry"],["dc.bibliographiccitation.lastpage","19961"],["dc.bibliographiccitation.volume","291"],["dc.contributor.author","Gleisner, Martin"],["dc.contributor.author","Kroppen, Benjamin"],["dc.contributor.author","Fricke, Christian"],["dc.contributor.author","Teske, Nelli"],["dc.contributor.author","Kliesch, Torben-Tobias"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Meinecke, Michael"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2020-12-10T18:12:56Z"],["dc.date.available","2020-12-10T18:12:56Z"],["dc.date.issued","2016"],["dc.description.abstract","The epsin N-terminal homology domain (ENTH) is a major player in clathrin-mediated endocytosis. To investigate the influence of initial membrane tension on ENTH binding and activity, we established a bilayer system based on adhered giant unilamellar vesicles (GUVs) to be able to control and adjust the membrane tension sigma covering a broad regime. The shape of each individual adhered GUV as well as its adhesion area was monitored by spinning disc confocal laser microscopy. Control of sigma in a range of 0.08-1.02 mN/m was achieved by altering the Mg2+ concentration in solution, which changes the surface adhesion energy per unit area of the GUVs. Specific binding of ENTH to phosphatidylinositol 4,5-bisphosphate leads to a substantial increase in adhesion area of the sessile GUV. At low tension (<0.1 mN/m) binding of ENTH can induce tubular structures, whereas at higher membrane tension the ENTH interaction deflates the sessile GUV and thereby increases the adhesion area. The increase in adhesion area is mainly attributed to a decrease in the area compressibility modulus K-A. We propose that the insertion of the ENTH helix-0 into the membrane is largely responsible for the observed decrease in K-A, which is supported by the observation that the mutant ENTH L6E shows a reduced increase in adhesion area. These results demonstrate that even in the absence of tubule formation, the area compressibility modulus and, as such, the bending rigidity of the membrane is considerably reduced upon ENTH binding. This renders membrane bending and tubule formation energetically less costly."],["dc.identifier.doi","10.1074/jbc.M116.731612"],["dc.identifier.eissn","1083-351X"],["dc.identifier.gro","3141621"],["dc.identifier.isi","000383243100019"],["dc.identifier.issn","0021-9258"],["dc.identifier.pmid","27466364"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74538"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1083-351X"],["dc.relation.issn","0021-9258"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.title","Epsin N-terminal Homology Domain (ENTH) Activity as a Function of Membrane Tension"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Journal Article Research Paper [["dc.bibliographiccitation.firstpage","57"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Colloid and Interface Science"],["dc.bibliographiccitation.lastpage","63"],["dc.bibliographiccitation.volume","366"],["dc.contributor.author","Lazzara, Thomas D."],["dc.contributor.author","Behn, Daniela"],["dc.contributor.author","Kliesch, Torben-Tobias"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2017-09-07T11:49:01Z"],["dc.date.available","2017-09-07T11:49:01Z"],["dc.date.issued","2012"],["dc.description.abstract","Anodic aluminum oxide (AAO) substrates with aligned, cylindrical, non-intersecting pores with diameters of 75 nm and depths of 3.5 or 10 mu m were functionalized with lipid monolayers harboring different receptor lipids. AAO was first functionalized with dodecyl-trichlorosilane, followed by fusion of small unilamellar vesicles (SUVs) forming a lipid monolayer. The SUVs' lipid composition was transferred onto the AAO surface, allowing us to control the surface receptor density. Owing to the optical transparency of the MO, the overall vesicle spreading process and subsequent protein binding to the receptor-doped lipid monolayers could be investigated in situ by optical waveguide spectroscopy (OWS). SUV spreading occurred at the pore-rim interface, followed by lateral diffusion of lipids within the pore-interior surface until homogeneous coverage was achieved with a lipid monolayer. The functionality of the system was demonstrated through streptavidin binding onto a biotin-DOPE containing POPC membrane, showing maximum protein coverage at 10 mol% of biotin-DOPE. The system enabled us to monitor in real-time the selective extraction of two histidine-tagged proteins, PIGEA14 (14 kDa) and ezrin (70 kDa), directly from cell lysate solutions using a DOGS-NTA(Ni)/DOPC (1:9) membrane. The purification process including protein binding and elution was monitored by OWS and confirmed by SOS-PAGE. (C) 2011 Elsevier Inc. All rights reserved."],["dc.identifier.doi","10.1016/j.jcis.2011.09.067"],["dc.identifier.gro","3142589"],["dc.identifier.isi","000297385900009"],["dc.identifier.pmid","22033154"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8956"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0021-9797"],["dc.title","Phospholipids as an alternative to direct covalent coupling: Surface functionalization of nanoporous alumina for protein recognition and purification"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS