Options
Mißbach, Helge
Loading...
Preferred name
Mißbach, Helge
Official Name
Mißbach, Helge
Alternative Name
Mißbach, H.
Missbach, Helge
Missbach, H.
Main Affiliation
Now showing 1 - 2 of 2
2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1535"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Biogeosciences"],["dc.bibliographiccitation.lastpage","1548"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Duda, Jan-Peter"],["dc.contributor.author","Thiel, Volker"],["dc.contributor.author","Bauersachs, Thorsten"],["dc.contributor.author","Mißbach, Helge"],["dc.contributor.author","Reinhardt, Manuel"],["dc.contributor.author","Schäfer, Nadine"],["dc.contributor.author","Van Kranendonk, Martin J."],["dc.contributor.author","Reitner, Joachim"],["dc.date.accessioned","2019-07-09T11:45:21Z"],["dc.date.available","2019-07-09T11:45:21Z"],["dc.date.issued","2018"],["dc.description.abstract","Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( n-C18) is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer–Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface) environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (“hydrothermal pump hypothesis”)"],["dc.identifier.doi","10.5194/bg-15-1535-2018"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15113"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59212"],["dc.language.iso","en"],["dc.relation.issn","1726-4189"],["dc.relation.orgunit","Abteilung Geobiologie"],["dc.subject.ddc","550"],["dc.title","Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass – the “hydrothermal pump hypothesis”"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1101"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Mißbach, Helge"],["dc.contributor.author","Duda, Jan-Peter"],["dc.contributor.author","van den Kerkhof, Alfons M."],["dc.contributor.author","Lüders, Volker"],["dc.contributor.author","Pack, Andreas"],["dc.contributor.author","Reitner, Joachim"],["dc.contributor.author","Thiel, Volker"],["dc.date.accessioned","2021-06-18T09:58:08Z"],["dc.date.available","2021-06-18T09:58:08Z"],["dc.date.issued","2021"],["dc.description.abstract","It is widely hypothesised that primeval life utilised small organic molecules as sources of carbon and energy. However, the presence of such primordial ingredients in early Earth habitats has not yet been demonstrated. Here we report the existence of indigenous organic molecules and gases in primary fluid inclusions in c. 3.5-billion-year-old barites (Dresser Formation, Pilbara Craton, Western Australia). The compounds identified (e.g., H2S, COS, CS2, CH4, acetic acid, organic (poly-)sulfanes, thiols) may have formed important substrates for purported ancestral sulfur and methanogenic metabolisms. They also include stable building blocks of methyl thioacetate (methanethiol, acetic acid) - a putative key agent in primordial energy metabolism and thus the emergence of life. Delivered by hydrothermal fluids, some of these compounds may have fuelled microbial communities associated with the barite deposits. Our findings demonstrate that early Archaean hydrothermal fluids contained essential primordial ingredients that provided fertile substrates for earliest life on our planet."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s41467-021-21323-z"],["dc.identifier.pmid","33597520"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/87260"],["dc.identifier.url","https://publications.goettingen-research-online.de/handle/2/82668"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","2041-1723"],["dc.relation.issn","2041-1723"],["dc.relation.orgunit","Abteilung Geobiologie"],["dc.rights","CC BY 4.0"],["dc.title","Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC