Now showing 1 - 4 of 4
  • 2003Journal Article
    [["dc.bibliographiccitation.firstpage","547"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","SIAM Journal on Mathematical Analysis"],["dc.bibliographiccitation.lastpage","560"],["dc.bibliographiccitation.volume","35"],["dc.contributor.author","Hohage, Thorsten"],["dc.contributor.author","Schmidt, Frank"],["dc.contributor.author","Zschiedrich, Lin"],["dc.date.accessioned","2017-09-07T11:52:57Z"],["dc.date.available","2017-09-07T11:52:57Z"],["dc.date.issued","2003"],["dc.description.abstract","In this paper we study the PML method for Helmholtz-type scattering problems with radially symmetric potential. The PML method consists of surrounding the computational domain with a perfectly matched sponge layer. We prove that the approximate solution obtained by the PML method converges exponentially fast to the true solution in the computational domain as the thickness of the sponge layer tends to infinity. This is a generalization of results by Lassas and Somersalo based on boundary integral equation techniques. Here we use techniques based on the pole condition instead. This makes it possible to treat problems without an explicitly known fundamental solution."],["dc.identifier.doi","10.1137/S0036141002406485"],["dc.identifier.gro","3146377"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4147"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.orgunit","Institut für Numerische und Angewandte Mathematik"],["dc.title","Solving time-harmonic scattering problems based on the pole condition. II: Convergence of the PML method"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2002Conference Paper
    [["dc.bibliographiccitation.firstpage","251"],["dc.bibliographiccitation.lastpage","256"],["dc.contributor.author","Hohage, Thorsten"],["dc.contributor.author","Schmidt, Frank"],["dc.contributor.author","Zschiedrich, Lin"],["dc.contributor.editor","Michielsen, Bas"],["dc.contributor.editor","Decavèle, Francine"],["dc.date.accessioned","2017-09-07T11:52:56Z"],["dc.date.available","2017-09-07T11:52:56Z"],["dc.date.issued","2002"],["dc.identifier.gro","3146375"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4144"],["dc.notes.intern","ONERA, Toulouse"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher.place","Toulouse"],["dc.relation.ispartof","Proceedings of the European Symposium on Numerical Methods in Electromagnetics: JEE 02"],["dc.title","A new method for the solution of scattering problems"],["dc.type","conference_paper"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details
  • 2003Journal Article
    [["dc.bibliographiccitation.firstpage","183"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","SIAM Journal on Mathematical Analysis"],["dc.bibliographiccitation.lastpage","210"],["dc.bibliographiccitation.volume","35"],["dc.contributor.author","Hohage, Thorsten"],["dc.contributor.author","Schmidt, Frank"],["dc.contributor.author","Zschiedrich, Lin"],["dc.date.accessioned","2017-09-07T11:52:57Z"],["dc.date.available","2017-09-07T11:52:57Z"],["dc.date.issued","2003"],["dc.identifier.doi","10.1137/S0036141002406473"],["dc.identifier.gro","3146376"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4146"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.orgunit","Institut für Numerische und Angewandte Mathematik"],["dc.title","Solving Time-Harmonic Scattering Problems Based on the Pole Condition I: Theory"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2008Journal Article
    [["dc.bibliographiccitation.firstpage","61"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Computational and Applied Mathematics"],["dc.bibliographiccitation.lastpage","69"],["dc.bibliographiccitation.volume","218"],["dc.contributor.author","Schmidt, Frank"],["dc.contributor.author","Hohage, Thorsten"],["dc.contributor.author","Klose, Roland"],["dc.contributor.author","Schädle, Achim"],["dc.contributor.author","Zschiedrich, Lin"],["dc.date.accessioned","2017-09-07T11:52:59Z"],["dc.date.available","2017-09-07T11:52:59Z"],["dc.date.issued","2008"],["dc.description.abstract","This paper presents a new numerical method for the solution of exterior Helmholtz scattering problems, which is applicable to inhomogeneous exterior domains and a wide class of geometries. The algorithm is based on the pole condition, which is a general radiation condition and allows a treatment of exterior Helmholtz problems without an explicit knowledge of Green's functions or a series representation. Our algorithm is based on a numerical approximation of the singularities of a Laplace transform of the exterior solution. Numerical examples illustrate the performance of the method."],["dc.identifier.doi","10.1016/j.cam.2007.04.046"],["dc.identifier.gro","3146393"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4162"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.orgunit","Institut für Numerische und Angewandte Mathematik"],["dc.title","Pole condition: A numerical method for Helmholtz-type scattering problems with inhomogeneous exterior domain"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI