Options
Schulte-Bisping, Hubert
Loading...
Preferred name
Schulte-Bisping, Hubert
Official Name
Schulte-Bisping, Hubert
Alternative Name
Schulte-Bisping, H.
Main Affiliation
Now showing 1 - 2 of 2
2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","5131"],["dc.bibliographiccitation.issue","16"],["dc.bibliographiccitation.journal","Biogeosciences"],["dc.bibliographiccitation.lastpage","5154"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Kurniawan, Syahrul"],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Matson, Amanda L."],["dc.contributor.author","Schulte-Bisping, Hubert"],["dc.contributor.author","Utami, Sri Rahayu"],["dc.contributor.author","van Straaten, Oliver"],["dc.contributor.author","Veldkamp, Edzo"],["dc.date.accessioned","2019-07-09T11:45:54Z"],["dc.date.available","2019-07-09T11:45:54Z"],["dc.date.issued","2018"],["dc.description.abstract","Conversion of forest to rubber and oil palm plantations is widespread in Sumatra, Indonesia, and it is largely unknown how such land-use conversion affects nutrient leaching losses. Our study aimed to quantify nutrient leaching and nutrient retention efficiency in the soil after land-use conversion to smallholder rubber and oil palm plantations. In Jambi province, Indonesia, we selected two landscapes on highly weathered Acrisol soils that mainly differed in texture: loam and clay. Within each soil type, we compared two reference land uses, lowland forest and jungle rubber (defined as rubber trees interspersed in secondary forest), with two converted land uses: smallholder rubber and oil palm plantations. Within each soil type, the first three land uses were represented by 4 replicate sites and the oil palm by three sites, totaling 30 sites. We measured leaching losses using suction cup lysimeters sampled biweekly to monthly from February to December 2013. Forests and jungle rubber had low solute concentrations in drainage water, suggesting low internal inputs of rock-derived nutrients and efficient internal cycling of nutrients. These reference land uses on the clay Acrisol soils had lower leaching of dissolved N and base cations (P D0.01–0.06) and higher N and base cation retention efficiency (P < 0.01–0.07) than those on the loam Acrisols. In the converted land uses, particularly on the loam Acrisol, the fertilized area of oil palm plantations showed higher leaching of dissolved N, organic C, and base cations (P < 0.01–0.08) and lower N and base cation retention efficiency compared to all the other land uses (P < 0.01–0.06). The unfertilized rubber plantations, particularly on the loam Acrisol, showed lower leaching of dissolved P (P D 0:08) and organic C (P < 0.01) compared to forest or jungle rubber, reflecting decreases in soil P stocks and C inputs to the soil. Our results suggest that land-use conversion to rubber and oil palm causes disruption of initially efficient nutrient cycling, which decreases nutrient availability. Over time, smallholders will likely be increasingly reliant on fertilization, with the risk of diminishing water quality due to increased nutrient leaching. Thus, there is a need to develop management practices to minimize leaching while sustaining productivity."],["dc.identifier.doi","10.5194/bg-15-5131-2018"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15340"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59333"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A05: Optimierung des Nährstoffmanagements in Ölpalmplantagen und Hochrechnung plot-basierter Treibhausgasflüsse auf die Landschaftsebene transformierter Regenwälder"],["dc.relation.issn","1726-4189"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","570"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2003Journal Article [["dc.bibliographiccitation.firstpage","1171"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Global Change Biology"],["dc.bibliographiccitation.lastpage","1184"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Veldkamp, Edzo"],["dc.contributor.author","Becker, Anja"],["dc.contributor.author","Schwendenmann, Luitgard"],["dc.contributor.author","Clark, Deborah A."],["dc.contributor.author","Schulte-Bisping, Hubert"],["dc.date.accessioned","2017-09-07T11:54:55Z"],["dc.date.available","2017-09-07T11:54:55Z"],["dc.date.issued","2003"],["dc.description.abstract","Contrary to large areas in Amazonia of tropical moist forests with a pronounced dry season, tropical wet forests in Costa Rica do not depend on deep roots to maintain an evergreen forest canopy through the year. At our Costa Rican tropical wet forest sites, we found a large carbon stock in the subsoil of deeply weathered Oxisols, even though only 0.04–0.2% of the measured root biomass (>2 mm diameter) to 3 m depth was below 2 m. In addition, we demonstrate that 20% or more of this deep soil carbon (depending on soil type) can be mobilized after forest clearing for pasture establishment. Microbial activity between 0.3 and 3 m depth contributed about 50% to the microbial activity in these soils, confirming the importance of the subsoil in C cycling. Depending on soil type, forest clearing for pasture establishment led from no change to a slight addition of carbon in the topsoil (0–0.3 m depth). However, this effect was countered by a substantial loss of C stocks in the subsoil (1–3 m depth). Our results show that large stocks of relatively labile carbon are not limited to areas with a prolonged dry season, but can also be found in deeply weathered soils below tropical wet forests. Forest clearing in such areas may produce unexpectedly high C losses from the subsoil."],["dc.identifier.doi","10.1046/j.1365-2486.2003.00656.x"],["dc.identifier.gro","3150152"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6884"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.issn","1354-1013"],["dc.subject","Costa Rica; deforestation; land-use change; microbial activity; pasture; soil organic carbon; tropical rain forest"],["dc.title","Substantial labile carbon stocks and microbial activity in deeply weathered soils below a tropical wet forest"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","unknown"],["dspace.entity.type","Publication"]]Details DOI