Options
Fernandes Lázaro, Diana
Loading...
Preferred name
Fernandes Lázaro, Diana
Official Name
Fernandes Lázaro, Diana
Alternative Name
Fernandes Lazaro, Diana
Fernandes Lázaro, D.
Fernandes Lazaro, D.
Lázaro, Diana F.
Lázaro, D.
Lazaro, D
Lazaro, Diana F.
Lázaro, Diana
Lazaro, Diana
Main Affiliation
Now showing 1 - 5 of 5
2016Journal Article [["dc.bibliographiccitation.firstpage","e1006098"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","PLOS Genetics"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Kleinknecht, Alexandra"],["dc.contributor.author","Popova, Blagovesta"],["dc.contributor.author","Lázaro, Diana F."],["dc.contributor.author","Pinho, Raquel"],["dc.contributor.author","Valerius, Oliver"],["dc.contributor.author","Outeiro, Tiago F."],["dc.contributor.author","Braus, Gerhard H."],["dc.contributor.editor","Lu, Bingwei"],["dc.date.accessioned","2018-09-28T07:41:43Z"],["dc.date.available","2018-09-28T07:41:43Z"],["dc.date.issued","2016"],["dc.description.abstract","Parkinson´s disease (PD) is characterized by the presence of proteinaceous inclusions called Lewy bodies that are mainly composed of α-synuclein (αSyn). Elevated levels of oxidative or nitrative stresses have been implicated in αSyn related toxicity. Phosphorylation of αSyn on serine 129 (S129) modulates autophagic clearance of inclusions and is prominently found in Lewy bodies. The neighboring tyrosine residues Y125, Y133 and Y136 are phosphorylation and nitration sites. Using a yeast model of PD, we found that Y133 is required for protective S129 phosphorylation and for S129-independent proteasome clearance. αSyn can be nitrated and form stable covalent dimers originating from covalent crosslinking of two tyrosine residues. Nitrated tyrosine residues, but not di-tyrosine-crosslinked dimers, contributed to αSyn cytotoxicity and aggregation. Analysis of tyrosine residues involved in nitration and crosslinking revealed that the C-terminus, rather than the N-terminus of αSyn, is modified by nitration and di-tyrosine formation. The nitration level of wild-type αSyn was higher compared to that of A30P mutant that is non-toxic in yeast. A30P formed more dimers than wild-type αSyn, suggesting that dimer formation represents a cellular detoxification pathway in yeast. Deletion of the yeast flavohemoglobin gene YHB1 resulted in an increase of cellular nitrative stress and cytotoxicity leading to enhanced aggregation of A30P αSyn. Yhb1 protected yeast from A30P-induced mitochondrial fragmentation and peroxynitrite-induced nitrative stress. Strikingly, overexpression of neuroglobin, the human homolog of YHB1, protected against αSyn inclusion formation in mammalian cells. In total, our data suggest that C-terminal Y133 plays a major role in αSyn aggregate clearance by supporting the protective S129 phosphorylation for autophagy and by promoting proteasome clearance. C-terminal tyrosine nitration increases pathogenicity and can only be partially detoxified by αSyn di-tyrosine dimers. Our findings uncover a complex interplay between S129 phosphorylation and C-terminal tyrosine modifications of αSyn that likely participates in PD pathology."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2016"],["dc.identifier.doi","10.1371/journal.pgen.1006098"],["dc.identifier.pmid","27341336"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13384"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/15831"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.eissn","1553-7404"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2013Review [["dc.bibliographiccitation.firstpage","415"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Journal of Parkinson s Disease"],["dc.bibliographiccitation.lastpage","459"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Wales, Pauline"],["dc.contributor.author","Pinho, Raquel"],["dc.contributor.author","Lazaro, Diana F."],["dc.contributor.author","Outeiro, Tiago Fleming"],["dc.date.accessioned","2018-11-07T09:29:27Z"],["dc.date.available","2018-11-07T09:29:27Z"],["dc.date.issued","2013"],["dc.description.abstract","The pathogenesis of many neurodegenerative disorders arises in association with the misfolding and accumulation of a wide variety of proteins. Much emphasis has been placed on understanding the nature of these protein accumulations, including their composition, the process by which they are formed and the physiological impact they impose at cellular and, ultimately, organismal levels. Alpha-synuclein (ASYN) is the major component of protein inclusions known as Lewy bodies and Lewy neurites, which are the typical pathological hallmarks in disorders referred to as synucleinopathies. In addition, mutations or multiplications in the gene encoding for ASYN have also been shown to cause familial cases of PD, the most common synucleinopathy. Although the precise function of ASYN remains unclear, it appears to be involved in a vast array of cellular processes. Here, we review, in depth, a spectrum of cellular and molecular mechanisms that have been implicated in synucleinopathies. Importantly, detailed understanding of the biology/pathobiology of ASYN may enable the development of novel avenues for diagnosis and/or therapeutic intervention in synucleinopathies."],["dc.identifier.doi","10.3233/JPD-130216"],["dc.identifier.isi","000328332100001"],["dc.identifier.pmid","24270242"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31034"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Ios Press"],["dc.relation.issn","1877-718X"],["dc.relation.issn","1877-7171"],["dc.title","Limelight on Alpha-Synuclein: Pathological and Mechanistic Implications in Neurodegeneration"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.artnumber","e2000374"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","PLoS Biology"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","de Oliveira, Rita Machado"],["dc.contributor.author","Miranda, Hugo Vicente"],["dc.contributor.author","Francelle, Laetitia"],["dc.contributor.author","Pinho, Raquel"],["dc.contributor.author","Szegoe, Eva Monika"],["dc.contributor.author","Martinho, Renato"],["dc.contributor.author","Munari, Francesca"],["dc.contributor.author","Lazaro, Diana F."],["dc.contributor.author","Moniot, Sebastien"],["dc.contributor.author","Guerreiro, Patricia S."],["dc.contributor.author","Fonseca, Luis"],["dc.contributor.author","Marijanovic, Zrinka"],["dc.contributor.author","Antas, Pedro"],["dc.contributor.author","Gerhardt, Ellen"],["dc.contributor.author","Enguita, Francisco Javier"],["dc.contributor.author","Fauvet, Bruno"],["dc.contributor.author","Penque, Deborah"],["dc.contributor.author","Pais, Teresa Faria"],["dc.contributor.author","Tong, Qiang"],["dc.contributor.author","Becker, Stefan"],["dc.contributor.author","Kuegler, Sebastian"],["dc.contributor.author","Lashuel, Hilal Ahmed"],["dc.contributor.author","Steegborn, Clemens"],["dc.contributor.author","Zweckstetter, Markus"],["dc.contributor.author","Outeiro, Tiago Fleming"],["dc.date.accessioned","2018-11-07T10:26:48Z"],["dc.date.available","2018-11-07T10:26:48Z"],["dc.date.issued","2017"],["dc.description.abstract","Sirtuin genes have been associated with aging and are known to affect multiple cellular pathways. Sirtuin 2 was previously shown to modulate proteotoxicity associated with ageassociated neurodegenerative disorders such as Alzheimer and Parkinson disease (PD). However, the precise molecular mechanisms involved remain unclear. Here, we provide mechanistic insight into the interplay between sirtuin 2 and alpha-synuclein, the major component of the pathognomonic protein inclusions in PD and other synucleinopathies. We found that alpha-synuclein is acetylated on lysines 6 and 10 and that these residues are deacetylated by sirtuin 2. Genetic manipulation of sirtuin 2 levels in vitro and in vivo modulates the levels of alpha-synuclein acetylation, its aggregation, and autophagy. Strikingly, mutants blocking acetylation exacerbate alpha-synuclein toxicity in vivo, in the substantia nigra of rats. Our study identifies alpha-synuclein acetylation as a key regulatory mechanism governing alpha-synuclein aggregation and toxicity, demonstrating the potential therapeutic value of sirtuin 2 inhibition in synucleinopathies."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.1371/journal.pbio.2000374"],["dc.identifier.isi","000397909600002"],["dc.identifier.pmid","28257421"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14377"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43121"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Public Library Science"],["dc.relation.haserratum","/handle/2/102935"],["dc.relation.issn","1545-7885"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article Erratum [["dc.bibliographiccitation.firstpage","e1002601"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","PLOS Biology"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","de Oliveira, Rita Machado"],["dc.contributor.author","Vicente Miranda, Hugo"],["dc.contributor.author","Francelle, Laetitia"],["dc.contributor.author","Pinho, Raquel"],["dc.contributor.author","Szegö, Éva M."],["dc.contributor.author","Martinho, Renato"],["dc.contributor.author","Munari, Francesca"],["dc.contributor.author","Lázaro, Diana F."],["dc.contributor.author","Moniot, Sébastien"],["dc.contributor.author","Guerreiro, Patrícia"],["dc.contributor.author","Outeiro, Tiago Fleming"],["dc.date.accessioned","2022-03-01T11:44:08Z"],["dc.date.available","2022-03-01T11:44:08Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1371/journal.pbio.1002601"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/102935"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1545-7885"],["dc.relation.iserratumof","/handle/2/43121"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Correction: The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","erratum_ja"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","121"],["dc.bibliographiccitation.journal","Neurobiology of Disease"],["dc.bibliographiccitation.lastpage","135"],["dc.bibliographiccitation.volume","119"],["dc.contributor.author","Paiva, Isabel"],["dc.contributor.author","Jain, Gaurav"],["dc.contributor.author","Lázaro, Diana F."],["dc.contributor.author","Jerčić, Kristina Gotovac"],["dc.contributor.author","Hentrich, Thomas"],["dc.contributor.author","Kerimoglu, Cemil"],["dc.contributor.author","Pinho, Raquel"],["dc.contributor.author","Szegő, Èva M."],["dc.contributor.author","Burkhardt, Susanne"],["dc.contributor.author","Capece, Vincenzo"],["dc.contributor.author","Halder, Rashi"],["dc.contributor.author","Islam, Rezaul"],["dc.contributor.author","Xylaki, Mary"],["dc.contributor.author","Caldi Gomes, Lucas A."],["dc.contributor.author","Roser, Anna-Elisa"],["dc.contributor.author","Lingor, Paul"],["dc.contributor.author","Schulze-Hentrich, Julia M."],["dc.contributor.author","Borovečki, Fran"],["dc.contributor.author","Fischer, André"],["dc.contributor.author","Outeiro, Tiago F."],["dc.date.accessioned","2020-12-10T15:20:24Z"],["dc.date.available","2020-12-10T15:20:24Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1016/j.nbd.2018.08.001"],["dc.identifier.pmid","30092270"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72660"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/35"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | B06: Die Rolle von RNA in Synapsenphysiologie und Neurodegeneration"],["dc.relation.workinggroup","RG Outeiro (Experimental Neurodegeneration)"],["dc.title","Alpha-synuclein deregulates the expression of COL4A2 and impairs ER-Golgi function"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC