Now showing 1 - 9 of 9
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","2017"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Langmuir"],["dc.bibliographiccitation.lastpage","2026"],["dc.bibliographiccitation.volume","33"],["dc.contributor.author","Rossner, Christian"],["dc.contributor.author","Tang, Qiyun"],["dc.contributor.author","Glatter, Otto"],["dc.contributor.author","Müller, Marcus"],["dc.contributor.author","Vana, Philipp"],["dc.date.accessioned","2018-08-15T14:19:43Z"],["dc.date.available","2018-08-15T14:19:43Z"],["dc.date.issued","2017"],["dc.description.abstract","Planet–satellite nanostructures from RAFT star polymers and larger (planet) as well as smaller (satellite) gold nanoparticles are analyzed in experiments and computer simulations regarding the influence of arm number of star polymers. A uniform scaling behavior of planet–satellite distances as a function of arm length was found both in the dried state (via transmission electron microscopy) after casting the nanostructures on surfaces and in the colloidally dispersed state (via simulations and small-angle X-ray scattering) when 2-, 3-, and 6-arm star polymers were employed. This indicates that the planet–satellite distances are mainly determined by the arm length of star polymers. The observed discrepancy between TEM and simulated distances can be attributed to the difference of polymer configurations in dried and dispersed state. Our results also show that these distances are controlled by the density of star polymers end groups, and the number of grabbed satellite particles is determined by the magnitude of the corresponding density. These findings demonstrate the feasibility to precisely control the planet–satellite structures at the nanoscale."],["dc.identifier.doi","10.1021/acs.langmuir.6b04473"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/15309"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.title","Uniform Distance Scaling Behavior of Planet-Satellite Nanostructures Made by Star Polymers"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","2070241"],["dc.bibliographiccitation.issue","44"],["dc.bibliographiccitation.journal","Small"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Liu, Huan"],["dc.contributor.author","Pang, Bo"],["dc.contributor.author","Tang, Qiyun"],["dc.contributor.author","Müller, Marcus"],["dc.contributor.author","Zhang, Hua"],["dc.contributor.author","Dervişoğlu, Riza"],["dc.contributor.author","Zhang, Kai"],["dc.date.accessioned","2021-12-08T12:27:17Z"],["dc.date.available","2021-12-08T12:27:17Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1002/smll.202070241"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/95307"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-476"],["dc.relation.eissn","1613-6829"],["dc.relation.issn","1613-6810"],["dc.title","Multiresponsive Janus‐Like Films: Self‐Assembly of Surface‐Acylated Cellulose Nanowhiskers and Graphene Oxide for Multiresponsive Janus‐Like Films with Time‐Dependent Dry‐State Structures (Small 44/2020)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article
    [["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.volume","126"],["dc.contributor.author","Tang, Qiyun"],["dc.contributor.author","Müller, Marcus"],["dc.date.accessioned","2021-04-14T08:30:08Z"],["dc.date.available","2021-04-14T08:30:08Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1103/PhysRevLett.126.028003"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83116"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1079-7114"],["dc.relation.issn","0031-9007"],["dc.title","Evaporation-Induced Liquid Expansion and Bubble Formation in Binary Mixtures"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","28249"],["dc.bibliographiccitation.issue","41"],["dc.bibliographiccitation.journal","Physical Chemistry, Chemical Physics"],["dc.bibliographiccitation.lastpage","28262"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Tang, Qiyun"],["dc.contributor.author","Angelomé, Paula C."],["dc.contributor.author","Soler-Illia, Galo J. A. A."],["dc.contributor.author","Müller, Marcus"],["dc.date.accessioned","2021-06-01T10:50:48Z"],["dc.date.available","2021-06-01T10:50:48Z"],["dc.date.issued","2017"],["dc.description.abstract","Variation of the dispersity index D as water and HCl evaporate distinctly. Right panels show the snapshots of formed mesopores."],["dc.description.abstract","Ordered mesostructured TiO 2 thin films are employed in diverse applications ranging from catalysis and sensing, to photovoltaic and lithium-ion batteries. Experimentally these mesostructured thin films are fabricated via a sol–gel process coupled with evaporation-induced self-assembly of a supramolecular template, where the concentration of hydrogen chloride (HCl) and water play vital roles. We employ a soft, coarse-grained model of the amphiphilic template Brij58 and spherical particles, representing titanium–oxo clusters, to study the role of HCl and water in the formation of mesostructured TiO 2 thin films. The template–cluster and cluster–cluster interactions are reflected in the interaction terms δ N BP and ε PP , respectively. The results show that a decrease in HCl (increase in ε PP ) leads to the formation of large mesopores due to the strong attraction between particles, giving rise to a high dispersity index (low order) of the thin films. However, a decrease in water (increase in δ N BP ) will compensate for the entropic attraction between particles, resulting in thin films with low dispersity index (high order). The variation of the dispersity index in the δ N BP – ε PP plane provides an intuitive understanding that the slow evaporation of HCl could drive the film towards a uniform mesoporous state, whereas fast evaporation pushes the film through a non-uniform phase. These results indicate that even if the mass proportion of the surfactants Brij58 and titanium precursors is the same in the initial solution, the final mesoporous structures could be diverse, which was confirmed by the controlled experiments. We also confirm the post-processing-towards-order strategy by making the particle rearrangement available by weakening the ε PP . The outlined procedure paves the way for soft, coarse-grained models to understand the complex co-assembly of transition metal clusters and amphiphilic surfactants towards the rational design of highly ordered mesoporous structures."],["dc.identifier.doi","10.1039/C7CP05304E"],["dc.identifier.eissn","1463-9084"],["dc.identifier.issn","1463-9076"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86791"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1463-9084"],["dc.relation.issn","1463-9076"],["dc.title","Formation of ordered mesostructured TiO 2 thin films: a soft coarse-grained simulation study"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","4551"],["dc.bibliographiccitation.issue","22"],["dc.bibliographiccitation.journal","Soft Matter"],["dc.bibliographiccitation.lastpage","4557"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Rossner, Christian"],["dc.contributor.author","Tang, Qiyun"],["dc.contributor.author","Müller, Marcus"],["dc.contributor.author","Kothleitner, Gerald"],["dc.date.accessioned","2020-12-10T18:11:25Z"],["dc.date.available","2020-12-10T18:11:25Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1039/C8SM00545A"],["dc.identifier.eissn","1744-6848"],["dc.identifier.issn","1744-683X"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74003"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Phase separation in mixed polymer brushes on nanoparticle surfaces enables the generation of anisotropic nanoarchitectures"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","322"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Chemistry of Materials"],["dc.bibliographiccitation.lastpage","330"],["dc.bibliographiccitation.volume","31"],["dc.contributor.author","Tarutani, Naoki"],["dc.contributor.author","Tokudome, Yasuaki"],["dc.contributor.author","Jobbágy, Matías"],["dc.contributor.author","Soler-Illia, Galo J. A. A."],["dc.contributor.author","Tang, Qiyun"],["dc.contributor.author","Müller, Marcus"],["dc.contributor.author","Takahashi, Masahide"],["dc.date.accessioned","2020-12-10T15:22:35Z"],["dc.date.available","2020-12-10T15:22:35Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1021/acs.chemmater.8b03082"],["dc.identifier.eissn","1520-5002"],["dc.identifier.issn","0897-4756"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73462"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Highly Ordered Mesoporous Hydroxide Thin Films through Self-Assembly of Size-Tailored Nanobuilding Blocks: A Theoretical-Experimental Approach"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","5008"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Biomacromolecules"],["dc.bibliographiccitation.lastpage","5020"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Tang, Qiyun"],["dc.contributor.author","Rossner, Christian"],["dc.contributor.author","Vana, Philipp"],["dc.contributor.author","Müller, Marcus"],["dc.date.accessioned","2021-04-14T08:27:48Z"],["dc.date.available","2021-04-14T08:27:48Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1021/acs.biomac.0c01184"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82409"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1526-4602"],["dc.relation.issn","1525-7797"],["dc.title","Prediction of Kinetically Stable Nanotheranostic Superstructures: Integral of First-Passage Times from Constrained Simulations"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","164901"],["dc.bibliographiccitation.issue","16"],["dc.bibliographiccitation.journal","The Journal of Chemical Physics"],["dc.bibliographiccitation.volume","145"],["dc.contributor.author","Denton, Alan R."],["dc.contributor.author","Tang, Qiyun"],["dc.date.accessioned","2020-12-10T18:12:35Z"],["dc.date.available","2020-12-10T18:12:35Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1063/1.4964864"],["dc.identifier.eissn","1089-7690"],["dc.identifier.issn","0021-9606"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74425"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Counterion-induced swelling of ionic microgels"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article
    [["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.volume","123"],["dc.contributor.author","Tang, Qiyun"],["dc.contributor.author","Müller, Marcus"],["dc.contributor.author","Li, Christopher Y."],["dc.contributor.author","Hu, Wenbing"],["dc.date.accessioned","2020-12-10T18:25:50Z"],["dc.date.available","2020-12-10T18:25:50Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1103/PhysRevLett.123.207801"],["dc.identifier.eissn","1079-7114"],["dc.identifier.issn","0031-9007"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75855"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Anomalous Ostwald Ripening Enables 2D Polymer Crystals via Fast Evaporation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI