Now showing 1 - 10 of 36
  • 2012Review
    [["dc.bibliographiccitation.firstpage","289"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Cell and Tissue Research"],["dc.bibliographiccitation.lastpage","311"],["dc.bibliographiccitation.volume","349"],["dc.contributor.author","Lingor, P."],["dc.contributor.author","Koch, J. C."],["dc.contributor.author","Tönges, L."],["dc.contributor.author","Bähr, M."],["dc.date.accessioned","2017-09-07T11:48:50Z"],["dc.date.available","2017-09-07T11:48:50Z"],["dc.date.issued","2012"],["dc.description.abstract","Degeneration of the axon is an important step in the pathomechanism of traumatic, inflammatory and degenerative neurological diseases. Increasing evidence suggests that axonal degeneration occurs early in the course of these diseases and therefore represents a promising target for future therapeutic strategies. We review the evidence for axonal destruction from pathological findings and animal models with particular emphasis on neurodegenerative and neurotraumatic disorders. We discuss the basic morphological and temporal modalities of axonal degeneration (acute, chronic and focal axonal degeneration and Wallerian degeneration). Based on the mechanistic concepts, we then delineate in detail the major molecular mechanisms that underlie the degenerative cascade, such as calcium influx, axonal transport, protein aggregation and autophagy. We finally concentrate on putative therapeutic targets based on the mechanistic prerequisites."],["dc.identifier.doi","10.1007/s00441-012-1362-3"],["dc.identifier.gro","3142506"],["dc.identifier.isi","000305405800023"],["dc.identifier.pmid","22392734"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8101"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8865"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0302-766X"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject","Neurodegeneration; Neurotrauma; Wallerian degeneration; Calcium Autophagy"],["dc.title","Axonal degeneration as a therapeutic target in the CNS"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","72"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Molecular Neurobiology"],["dc.bibliographiccitation.lastpage","86"],["dc.bibliographiccitation.volume","54"],["dc.contributor.author","Ribas, Vinicius Toledo"],["dc.contributor.author","Koch, Jan C."],["dc.contributor.author","Michel, Uwe"],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Lingor, Paul"],["dc.date.accessioned","2018-01-09T11:14:21Z"],["dc.date.available","2018-01-09T11:14:21Z"],["dc.date.issued","2017"],["dc.description.abstract","Axonal degeneration is one of the initial steps in many traumatic and neurodegenerative central nervous system (CNS) disorders and thus a promising therapeutic target. A focal axonal lesion is followed by acute axonal degeneration (AAD) of both adjacent axon parts, before proximal and distal parts follow different degenerative fates at later time points. Blocking calcium influx by calcium channel inhibitors was previously shown to attenuate AAD after optic nerve crush (ONC). However, it remains unclear whether the attenuation of AAD also promotes consecutive axonal regeneration. Here, we used a rat ONC model to study the effects of calcium channel inhibitors on axonal degeneration, retinal ganglion cell (RGC) survival, and axonal regeneration, as well as the molecular mechanisms involved. Application of calcium channel inhibitors attenuated AAD after ONC and preserved axonal integrity as visualized by live imaging of optic nerve axons. Consecutively, this resulted in improved survival of RGCs and improved axonal regeneration at 28 days after ONC. We show further that calcium channel inhibition attenuated lesion-induced calpain activation in the proximity of the crush and inhibited the activation of the c-Jun N-terminal kinase pathway. Pro-survival signaling via Akt in the retina was also increased. Our data thus show that attenuation of AAD improves consecutive neuronal survival and axonal regeneration and that calcium channel inhibitors could be valuable tools for therapeutic interventions in traumatic and degenerative CNS disorders."],["dc.identifier.doi","10.1007/s12035-015-9676-2"],["dc.identifier.pmid","26732591"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11580"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1559-1182"],["dc.title","Attenuation of Axonal Degeneration by Calcium Channel Inhibitors Improves Retinal Ganglion Cell Survival and Regeneration After Optic Nerve Crush"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e1811"],["dc.bibliographiccitation.journal","Cell Death and Disease"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Koch, J. C."],["dc.contributor.author","Bitow, F."],["dc.contributor.author","Haack, J."],["dc.contributor.author","D'Hedouville, Z."],["dc.contributor.author","Zhang, J-N"],["dc.contributor.author","Tönges, L."],["dc.contributor.author","Michel, U."],["dc.contributor.author","Oliveira, L. M. A."],["dc.contributor.author","Jovin, T. M."],["dc.contributor.author","Liman, Jan"],["dc.contributor.author","Tatenhorst, L."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Lingor, P."],["dc.date.accessioned","2017-09-07T11:43:42Z"],["dc.date.available","2017-09-07T11:43:42Z"],["dc.date.issued","2015"],["dc.description.abstract","Many neuropathological and experimental studies suggest that the degeneration of dopaminergic terminals and axons precedes the demise of dopaminergic neurons in the substantia nigra, which finally results in the clinical symptoms of Parkinson disease (PD). The mechanisms underlying this early axonal degeneration are, however, still poorly understood. Here, we examined the effects of overexpression of human wildtype alpha-synuclein (alpha Syn-WT), a protein associated with PD, and its mutant variants alpha Syn-A30P and -A53T on neurite morphology and functional parameters in rat primary midbrain neurons (PMN). Moreover, axonal degeneration after overexpression of alpha Syn-WT and -A30P was analyzed by live imaging in the rat optic nerve in vivo. We found that overexpression of alpha Syn-WT and of its mutants A30P and A53T impaired neurite outgrowth of PMN and affected neurite branching assessed by Sholl analysis in a variant-dependent manner. Surprisingly, the number of primary neurites per neuron was increased in neurons transfected with alpha Syn. Axonal vesicle transport was examined by live imaging of PMN co-transfected with EGFP-labeled synaptophysin. Overexpression of all alpha Syn variants significantly decreased the number of motile vesicles and decelerated vesicle transport compared with control. Macroautophagic flux in PMN was enhanced by alpha Syn-WT and -A53T but not by alpha Syn-A30P. Correspondingly, colocalization of alpha Syn and the autophagy marker LC3 was reduced for alpha Syn-A30P compared with the other alpha Syn variants. The number of mitochondria colocalizing with LC3 as a marker for mitophagy did not differ among the groups. In the rat optic nerve, both alpha Syn-WT and -A30P accelerated kinetics of acute axonal degeneration following crush lesion as analyzed by in vivo live imaging. We conclude that alpha Syn overexpression impairs neurite outgrowth and augments axonal degeneration, whereas axonal vesicle transport and autophagy are severely altered."],["dc.description.sponsorship","Open-Access Publikationsfonds 2015"],["dc.identifier.doi","10.1038/cddis.2015.169"],["dc.identifier.gro","3141868"],["dc.identifier.isi","000358788800011"],["dc.identifier.pmid","26158517"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12015"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1967"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2041-4889"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject","Central nervous system; Molecular neuroscience; Parkinson's disease"],["dc.title","Alpha-Synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","3472"],["dc.bibliographiccitation.issue","18"],["dc.bibliographiccitation.journal","FEBS Journal"],["dc.bibliographiccitation.lastpage","3483"],["dc.bibliographiccitation.volume","278"],["dc.contributor.author","Koch, J. C."],["dc.contributor.author","Barski, E."],["dc.contributor.author","Lingor, P."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Michel, U."],["dc.date.accessioned","2017-09-07T11:43:25Z"],["dc.date.available","2017-09-07T11:43:25Z"],["dc.date.issued","2011"],["dc.description.abstract","Repressor element-1 silencing transcription factor (REST) is a transcriptional repressor of neuron-specific genes that binds to a conserved DNA element, the neuron restrictive silencer element (NRSE/RE1). Interestingly, increased REST activity is found in several neurological diseases like Huntington's disease and cerebral ischemia. Recently, it was shown that NRSE dsRNA, a double-stranded non-coding RNA can bind to REST during a defined period of neuronal differentiation, and thereby changes REST from a transcriptional repressor to an activator of neuron-specific genes. Here, we analyzed the effects of NRSE dsRNA expression in primary retinal ganglion cells. We found that NRSE dsRNA expression vectors significantly enhance neurite outgrowth even when axonal degeneration is induced by neurotrophin deprivation. Transfection of HEK cells with NRSE dsRNA-expressing vectors altered their morphology leading to the formation of thin processes and induced the expression of neurofilament-68. Surprisingly, control vectors containing REST-binding sites, but not expressing NRSE dsRNA, resulted in the same effects, also in the retinal ganglion cell model. Reporter assays and retention of REST in the cytoplasm with a labeled NRSE/RE1-containing plasmid incapable of entering the nucleus suggest that sequestration of REST in the cytoplasm is the reason for the observed effects. No evidence for a biological function of NRSE dsRNA could be found in these models. We conclude that sequestration of REST leads to enhanced neurite outgrowth in retinal ganglion cells and that an increased activity of REST, as it is found in several neurodegenerative diseases, can be effectively modulated by sequestration of REST with plasmids containing NRSE/RE1 sites."],["dc.identifier.doi","10.1111/j.1742-4658.2011.08269.x"],["dc.identifier.gro","3142674"],["dc.identifier.isi","000294810600024"],["dc.identifier.pmid","21790997"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/104"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1742-464X"],["dc.title","Plasmids containing NRSE/RE1 sites enhance neurite outgrowth of retinal ganglion cells via sequestration of REST independent of NRSE dsRNA expression"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Review
    [["dc.bibliographiccitation.artnumber","39"],["dc.bibliographiccitation.journal","Frontiers in Molecular Neuroscience"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Tönges, L."],["dc.contributor.author","Koch, J.-C."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Lingor, P."],["dc.date.accessioned","2017-09-07T11:45:03Z"],["dc.date.available","2017-09-07T11:45:03Z"],["dc.date.issued","2011"],["dc.description.abstract","Regenerative failure in the CNS largely depends on pronounced growth inhibitory signaling and reduced cellular survival after a lesion stimulus. One key mediator of growth inhibitory signaling is Rho-associated kinase (ROCK), which has been shown to modulate growth cone stability by regulation of actin dynamics. Recently, there is accumulating evidence the ROCK also plays a deleterious role for cellular survival. In this manuscript we illustrate that ROCK is involved in a variety of intracellular signaling pathways that comprise far more than those involved in neurite growth inhibition alone. Although ROCK function is currently studied in many different disease contexts, our review focuses on neurorestorative approaches in the CNS, especially in models of neurotrauma. Promising strategies to target ROCK by pharmacological small molecule inhibitors and RNAi approaches are evaluated for their outcome on regenerative growth and cellular protection both in preclinical and in clinical studies."],["dc.identifier.doi","10.3389/fnmol.2011.00039"],["dc.identifier.gro","3142797"],["dc.identifier.isi","000209370100036"],["dc.identifier.pmid","22065949"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8272"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/241"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1662-5099"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","ROCKing regeneration: Rho kinase inhibition as molecular target for neurorestoration"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","3355"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Brain"],["dc.bibliographiccitation.lastpage","3370"],["dc.bibliographiccitation.volume","135"],["dc.contributor.author","Tönges, L."],["dc.contributor.author","Frank, T."],["dc.contributor.author","Tatenhorst, L."],["dc.contributor.author","Saal, K. A."],["dc.contributor.author","Koch, J. C."],["dc.contributor.author","Szego, E. M."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Weishaupt, J. H."],["dc.contributor.author","Lingor, P."],["dc.date.accessioned","2017-09-07T11:48:22Z"],["dc.date.available","2017-09-07T11:48:22Z"],["dc.date.issued","2012"],["dc.description.abstract","Axonal degeneration is one of the earliest features of Parkinson's disease pathology, which is followed by neuronal death in the substantia nigra and other parts of the brain. Inhibition of axonal degeneration combined with cellular neuroprotection therefore seem key to targeting an early stage in Parkinson's disease progression. Based on our previous studies in traumatic and neurodegenerative disease models, we have identified rho kinase as a molecular target that can be manipulated to disinhibit axonal regeneration and improve survival of lesioned central nervous system neurons. In this study, we examined the neuroprotective potential of pharmacological rho kinase inhibition mediated by fasudil in the in vitro 1-methyl-4-phenylpyridinium cell culture model and in the subchronic in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Application of fasudil resulted in a significant attenuation of dopaminergic cell loss in both paradigms. Furthermore, dopaminergic terminals were preserved as demonstrated by analysis of neurite network in vitro, striatal fibre density and by neurochemical analysis of the levels of dopamine and its metabolites in the striatum. Behavioural tests demonstrated a clear improvement in motor performance after fasudil treatment. The Akt survival pathway was identified as an important molecular mediator for neuroprotective effects of rho kinase inhibition in our paradigm. We conclude that inhibition of rho kinase using the clinically approved small molecule inhibitor fasudil may be a promising new therapeutic strategy for Parkinson's disease."],["dc.identifier.doi","10.1093/brain/aws254"],["dc.identifier.gro","3142444"],["dc.identifier.isi","000311644800021"],["dc.identifier.pmid","23087045"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9499"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8352"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0006-8950"],["dc.rights","CC BY-NC 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/3.0"],["dc.title","Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson's disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","304"],["dc.bibliographiccitation.journal","Frontiers in Neuroscience"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Günther, R."],["dc.contributor.author","Saal, K.-A."],["dc.contributor.author","Suhr, M."],["dc.contributor.author","Scheer, D."],["dc.contributor.author","Koch, J. C."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Lingor, P."],["dc.contributor.author","Tönges, L."],["dc.date.accessioned","2017-09-07T11:45:27Z"],["dc.date.available","2017-09-07T11:45:27Z"],["dc.date.issued","2014"],["dc.description.abstract","Disease progression in amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motoneurons and their axons which results in a progressive muscle weakness and ultimately death from respiratory failure. The only approved drug, riluzole, lacks clinical efficacy so that more potent treatment options are needed. We have identified rho kinase (ROCK) as a target, which can be manipulated to beneficially influence disease progression in models of ALS. Here, we examined the therapeutic potential of the ROCK inhibitor Y-27632 in both an in vitro and in an in vivo paradigm of motoneuron disease. Application of Y-27632 to primary motoneurons in vitro increased survival and promoted neunte outgrowth. In vivo, SOD1G93A mice were orally treated with 2 or 30 mg/kg body weight of Y-27632. The 2 mg/kg group did not benefit from Y-27632 treatment, whereas treatment with 30 mg/kg resulted in improved motor function in male mice. Female mice showed only limited improvement and overall survival was not modified in both 2 and 30 mg/kg Y-27632 groups. In conclusion, we provide evidence that inhibition of ROCK by Y-27632 is neuroprotective in vitro but has limited beneficial effects in vivo being restricted to male mice. Therefore, the evaluation of ROCK inhibitors in preclinical models of ALS should always take gender differences into account."],["dc.format.extent","9"],["dc.identifier.doi","10.3389/fnins.2014.00304"],["dc.identifier.gro","3142033"],["dc.identifier.isi","000346516800001"],["dc.identifier.pmid","25339858"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11029"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3801"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1662-453X"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The rho kinase inhibitor Y-27632 improves motor performance in male SOD1(G93A) mice"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e3936"],["dc.bibliographiccitation.issue","61"],["dc.bibliographiccitation.journal","Journal of Visualized Experiments"],["dc.contributor.author","Günther, R."],["dc.contributor.author","Suhr, M."],["dc.contributor.author","Koch, J. C."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Lingor, P."],["dc.contributor.author","Tönges, L."],["dc.date.accessioned","2017-09-07T11:48:58Z"],["dc.date.available","2017-09-07T11:48:58Z"],["dc.date.issued","2012"],["dc.description.abstract","Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder resulting in progressive degeneration of motoneurons. Peak of onset is around 60 years for the sporadic disease and around 50 years for the familial disease. Due to its progressive course, 50% of the patients die within 30 months of symptom onset. In order to evaluate novel treatment options for this disease, genetic mouse models of ALS have been generated based on human familial mutations in the SOD gene, such as the SOD1 (G93A) mutation. Most important aspects that have to be evaluated in the model are overall survival, clinical course and motor function. Here, we demonstrate the clinical evaluation, show the conduction of two behavioural motor tests and provide quantitative scoring systems for all parameters. Because an in depth analysis of the ALS mouse model usually requires an immunohistochemical examination of the spinal cord, we demonstrate its preparation in detail applying the dorsal laminectomy method. Exemplary histological findings are demonstrated. The comprehensive application of the depicted examination methods in studies on the mouse model of ALS will enable the researcher to reliably test future therapeutic options which can provide a basis for later human clinical trials."],["dc.identifier.doi","10.3791/3936"],["dc.identifier.gro","3142575"],["dc.identifier.isi","000209222800054"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8941"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1940-087X"],["dc.title","Clinical Testing and Spinal Cord Removal in a Mouse Model for Amyotrophic Lateral Sclerosis (ALS)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","342"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Journal of Neurochemistry"],["dc.bibliographiccitation.lastpage","351"],["dc.bibliographiccitation.volume","145"],["dc.contributor.author","Maass, Fabian"],["dc.contributor.author","Michalke, Bernhard"],["dc.contributor.author","Leha, Andreas"],["dc.contributor.author","Boerger, Matthias"],["dc.contributor.author","Zerr, Inga"],["dc.contributor.author","Koch, Jan-Christoph"],["dc.contributor.author","Tönges, Lars"],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Lingor, Paul"],["dc.date.accessioned","2018-04-23T11:46:57Z"],["dc.date.available","2018-04-23T11:46:57Z"],["dc.date.issued","2018"],["dc.description.abstract","The diagnosis of Parkinson's disease (PD) still lacks objective diagnostic markers independent of clinical criteria. Cerebrospinal fluid (CSF) samples from 36 PD and 42 age‐matched control patients were subjected to inductively coupled plasma‐sector field mass spectrometry and a total of 28 different elements were quantified. Different machine learning algorithms were applied to the dataset to identify a discriminating set of elements yielding a novel biomarker signature. Using 19 stably detected elements, the extreme gradient tree boosting model showed the best performance in the discrimination of PD and control patients with high specificity and sensitivity (78.6% and 83.3%, respectively), re‐classifying the training data to 100%. The 10 times 10‐fold cross‐validation yielded a good area under the receiver operating characteristic curve of 0.83. Arsenic, magnesium, and selenium all showed significantly higher mean CSF levels in the PD group compared to the control group (p = 0.01, p = 0.04, and p = 0.03). Reducing the number of elements to a discriminating minimum, we identified an elemental cluster (Se, Fe, As, Ni, Mg, Sr), which most importantly contributed to the sample discrimination. Selenium was identified as the element with the highest impact within this cluster directly followed by iron. After prospective validation, this elemental fingerprint in the CSF could have the potential to be used as independent biomarker for the diagnosis of PD. Next to their value as a biomarker, these data also argue for a prominent role of these highly discriminating six elements in the pathogenesis of PD."],["dc.identifier.doi","10.1111/jnc.14316"],["dc.identifier.gro","3142063"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13277"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation.issn","0022-3042"],["dc.title","Elemental fingerprint as a cerebrospinal fluid biomarker for the diagnosis of Parkinson's disease"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1887"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Nature Protocols"],["dc.bibliographiccitation.lastpage","1896"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Koch, J. C."],["dc.contributor.author","Knöferle, J."],["dc.contributor.author","Tönges, L."],["dc.contributor.author","Michel, U."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Lingor, P."],["dc.date.accessioned","2017-09-07T11:43:17Z"],["dc.date.available","2017-09-07T11:43:17Z"],["dc.date.issued","2011"],["dc.description.abstract","In this protocol, we describe the imaging of single axons in the rat optic nerve in vivo. Axons are labeled through the intravitreal injection of adeno-associated viral vectors (AAVs) expressing a fluorophore (duration of the procedure similar to 1 h). Two weeks after intravitreal injection, the optic nerve is surgically exposed (duration similar to 1 h) and labeled axons are imaged with an epifluorescence microscope either for up to 8 h or repetitively on the following days. Additionally, intravitreal injection of calcium-sensitive dyes allows for imaging of intra-axonal calcium kinetics. This procedure enables the analysis of the morphological changes of degenerating axons in the optic nerve in different lesion paradigms, such as optic nerve crush, axotomy or pin lesion. Furthermore, the effects of pharmacological manipulations on axonal stability and axonal calcium kinetics in axons of the central nervous system can be studied in vivo."],["dc.identifier.doi","10.1038/nprot.2011.403"],["dc.identifier.gro","3142620"],["dc.identifier.isi","000298157100005"],["dc.identifier.pmid","22051801"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/44"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Deutsche Forschungsgemeinschaft (DFG)"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1754-2189"],["dc.title","Imaging of rat optic nerve axons in vivo"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS