Now showing 1 - 10 of 18
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","51"],["dc.bibliographiccitation.journal","Progress in Biophysics and Molecular Biology"],["dc.bibliographiccitation.lastpage","60"],["dc.bibliographiccitation.volume","144"],["dc.contributor.author","Schlick, Susanne F."],["dc.contributor.author","Spreckelsen, Florian"],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Iyer, Lavanya M."],["dc.contributor.author","Meyer, Tim"],["dc.contributor.author","Zelarayan, Laura C."],["dc.contributor.author","Luther, Stefan"],["dc.contributor.author","Parlitz, Ulrich"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Rehfeldt, Florian"],["dc.date.accessioned","2020-12-10T15:20:42Z"],["dc.date.available","2020-12-10T15:20:42Z"],["dc.date.issued","2019"],["dc.description.abstract","Cardiomyocyte and stroma cell cross-talk is essential for the formation of collagen-based engineered heart muscle, including engineered human myocardium (EHM). Fibroblasts are a main component of the myocardial stroma. We hypothesize that fibroblasts, by compacting the surrounding collagen network, support the self-organization of cardiomyocytes into a functional syncytium. With a focus on early self-organization processes in EHM, we studied the molecular and biophysical adaptations mediated by defined populations of fibroblasts and embryonic stem cell-derived cardiomyocytes in a collagen type I hydrogel. After a short phase of cell-independent collagen gelation (30 min), tissue compaction was progressively mediated by fibroblasts. Fibroblast-mediated tissue stiffening was attenuated in the presence of cardiomyocytes allowing for the assembly of stably contracting, force-generating EHM within 4 weeks. Comparative RNA-sequencing data corroborated that fibroblasts are particularly sensitive to the tissue compaction process, resulting in the fast activation of transcription profiles, supporting heart muscle development and extracellular matrix synthesis. Large amplitude oscillatory shear (LAOS) measurements revealed nonlinear strain stiffening at physiological strain amplitudes (>2%), which was reduced in the presence of cells. The nonlinear stress-strain response could be characterized by a mathematical model. Collectively, our study defines the interplay between fibroblasts and cardiomyocytes during human heart muscle self-organization in vitro and underscores the relevance of fibroblasts in the biological engineering of a cardiomyogenesis-supporting viscoelastic stroma. We anticipate that the established mathematical model will facilitate future attempts to optimize EHM for in vitro (disease modelling) and in vivo applications (heart repair)."],["dc.identifier.doi","10.1016/j.pbiomolbio.2018.11.011"],["dc.identifier.pmid","30553553"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72769"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/248"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation.workinggroup","RG Luther (Biomedical Physics)"],["dc.relation.workinggroup","RG Tiburcy (Stem Cell Disease Modeling)"],["dc.relation.workinggroup","RG Zelarayán-Behrend (Developmental Pharmacology)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","CC BY 4.0"],["dc.title","Agonistic and antagonistic roles of fibroblasts and cardiomyocytes on viscoelastic stiffening of engineered human myocardium"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","127"],["dc.bibliographiccitation.journal","Stem Cell Research"],["dc.bibliographiccitation.lastpage","131"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Noack, Claudia"],["dc.contributor.author","Haupt, Luis Peter"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Streckfuss-Bömeke, Katrin"],["dc.contributor.author","Zelarayán, Laura Cecilia"],["dc.date.accessioned","2018-04-23T11:49:22Z"],["dc.date.available","2018-04-23T11:49:22Z"],["dc.date.issued","2017"],["dc.description.abstract","Krueppel-like factor 15 (KLF15) is abundantly expressed in liver, kidney, and muscle, including myocardium. In the adult heart KLF15 is important to maintain homeostasis and to repress hypertrophic remodeling. We generated a homozygous hESC KLF15 knockout (KO) line using paired CRISPR/Cas9n. KLF15-KO cells maintained full pluripotency and differentiation potential as well as genomic integrity. We demonstrated that KLF15-KO cells can be differentiated into morphologically normal cardiomyocytes turning them into a valuable tool for studying human KLF15-mediated mechanisms resulting in human cardiac dysfunction."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.1016/j.scr.2017.07.007"],["dc.identifier.gro","3142524"],["dc.identifier.pmid","28925362"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14618"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13680"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/175"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | C07: Kardiomyozyten Wnt/β-catenin Komplex Aktivität im pathologischen Herz-Remodeling - als gewebespezifischer therapeutischer Ansatz"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation.issn","1873-5061"],["dc.relation.workinggroup","RG Zelarayán-Behrend (Developmental Pharmacology)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Generation of a KLF15 homozygous knockout human embryonic stem cell line using paired CRISPR/Cas9n, and human cardiomyocytes derivation"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","6"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Circulation Research"],["dc.bibliographiccitation.lastpage","24"],["dc.bibliographiccitation.volume","126"],["dc.contributor.author","Schoger, Eric"],["dc.contributor.author","Carroll, Kelli J."],["dc.contributor.author","Iyer, Lavanya M."],["dc.contributor.author","McAnally, John R."],["dc.contributor.author","Tan, Wei"],["dc.contributor.author","Liu, Ning"],["dc.contributor.author","Noack, Claudia"],["dc.contributor.author","Shomroni, Orr"],["dc.contributor.author","Salinas, Gabriela"],["dc.contributor.author","Groß, Julia"],["dc.contributor.author","Herzog, Nicole"],["dc.contributor.author","Doroudgar, Shirin"],["dc.contributor.author","Bassel-Duby, Rhonda"],["dc.contributor.author","Zimmermann, Wolfram-H."],["dc.contributor.author","Zelarayán, Laura C."],["dc.date.accessioned","2020-12-10T18:38:00Z"],["dc.date.available","2020-12-10T18:38:00Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1161/CIRCRESAHA.118.314522"],["dc.identifier.pmid","31730408"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77162"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/332"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | C07: Kardiomyozyten Wnt/β-catenin Komplex Aktivität im pathologischen Herz-Remodeling - als gewebespezifischer therapeutischer Ansatz"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation.workinggroup","RG Zelarayán-Behrend (Developmental Pharmacology)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.title","CRISPR-Mediated Activation of Endogenous Gene Expression in the Postnatal Heart"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2022Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","109"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Der Kardiologe"],["dc.bibliographiccitation.lastpage","114"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Hasenfuß, Gerd P."],["dc.contributor.author","Kaul, Axel"],["dc.contributor.author","Lehnart, Stephan Elmar"],["dc.contributor.author","Linke, Wolfgang Albrecht"],["dc.contributor.author","Zelarayan, Laura Cecilia"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.date.accessioned","2022-05-12T08:45:14Z"],["dc.date.available","2022-05-12T08:45:14Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1007/s12181-022-00540-w"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/107839"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/423"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | Z: Zentrale Organisation und Verwaltung"],["dc.relation.issn","1864-9718"],["dc.relation.issn","1864-9726"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Linke (Kardiovaskuläre Physiologie)"],["dc.relation.workinggroup","RG Zelarayán-Behrend (Developmental Pharmacology)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.title","Modulatorische Einheiten bei Herzinsuffizienz"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","992"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","EMBO Molecular Medicine"],["dc.bibliographiccitation.lastpage","1007"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Noack, Claudia"],["dc.contributor.author","Zafiriou, Maria-Patapia"],["dc.contributor.author","Schaeffer, Hans-Joerg"],["dc.contributor.author","Renger, Anke"],["dc.contributor.author","Pavlova, Elena"],["dc.contributor.author","Dietz, Rainer"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Bergmann, Martin W."],["dc.contributor.author","Zelarayan, Laura Cecilia"],["dc.date.accessioned","2017-09-07T11:48:25Z"],["dc.date.available","2017-09-07T11:48:25Z"],["dc.date.issued","2012"],["dc.description.abstract","Wnt/beta-catenin signalling controls adult heart remodelling in part via regulation of cardiac progenitor cell (CPC) differentiation. An enhanced understanding of mechanisms controlling CPC biology might facilitate the development of new therapeutic strategies in heart failure. We identified and characterized a novel cardiac interaction between Krueppel-like factor 15 and components of the Wnt/beta-catenin pathway leading to inhibition of transcription. In vitro mutation, reporter assays and co-localization analyses revealed that KLF15 requires both the C-terminus, necessary for nuclear localization, and a minimal N-terminal regulatory region to inhibit transcription. In line with this, functional Klf15 knock-out mice exhibited cardiac beta-catenin transcriptional activation along with functional cardiac deterioration in normal homeostasis and upon hypertrophy. We further provide in vivo and in vitro evidences for preferential endothelial lineage differentiation of CPCs upon KLF15 deletion. Via inhibition of beta-catenin transcription, KLF15 controls CPC homeostasis in the adult heart similar to embryonic cardiogenesis. This knowledge may provide a tool for reactivation of this apparently dormant CPC population in the adult heart and thus be an attractive approach to enhance endogenous cardiac repair."],["dc.identifier.doi","10.1002/emmm.201101043"],["dc.identifier.gro","3142470"],["dc.identifier.isi","000308302900015"],["dc.identifier.pmid","22767436"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8714"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8640"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Deutsche Forschungsgemeinschaft (DFG); Juergen Manchot Foundation"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1757-4676"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Krueppel-like factor 15 regulates Wnt/ss-catenin transcription and controls cardiac progenitor cell fate in the postnatal heart"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","S1873506121003202"],["dc.bibliographiccitation.firstpage","102473"],["dc.bibliographiccitation.journal","Stem Cell Research"],["dc.bibliographiccitation.volume","55"],["dc.contributor.author","Schoger, Eric"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Cyganek, Lukas"],["dc.contributor.author","Zelarayán, Laura Cecilia"],["dc.date.accessioned","2021-08-12T07:44:46Z"],["dc.date.available","2021-08-12T07:44:46Z"],["dc.date.issued","2021"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1016/j.scr.2021.102473"],["dc.identifier.pii","S1873506121003202"],["dc.identifier.pmid","34343828"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/88289"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/333"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/400"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-448"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | C07: Kardiomyozyten Wnt/β-catenin Komplex Aktivität im pathologischen Herz-Remodeling - als gewebespezifischer therapeutischer Ansatz"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation","SFB 1002 | INF: Unterstützung der SFB 1002 Forschungsdatenintegration, -visualisierung und -nachnutzung"],["dc.relation.issn","1873-5061"],["dc.relation.workinggroup","RG Zelarayán-Behrend (Developmental Pharmacology)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.relation.workinggroup","RG Cyganek (Stem Cell Unit)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Establishment of two homozygous CRISPR interference (CRISPRi) knock-in human induced pluripotent stem cell (hiPSC) lines for titratable endogenous gene repression"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Conference Abstract
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Naunyn-Schmiedeberg s Archives of Pharmacology"],["dc.bibliographiccitation.volume","389"],["dc.contributor.author","Woelfer, M."],["dc.contributor.author","Noack, C."],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Khadjeh, Sara"],["dc.contributor.author","Chebbok, E."],["dc.contributor.author","Hasenfuss, G. H."],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Toischer, Karl"],["dc.contributor.author","Zelarayan, Laura Cecilia"],["dc.date.accessioned","2018-11-07T10:19:01Z"],["dc.date.available","2018-11-07T10:19:01Z"],["dc.date.issued","2016"],["dc.format.extent","S38"],["dc.identifier.isi","000398368200155"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41576"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","New york"],["dc.relation.conference","82nd Annual Meeting of the German-Society-for-Exerimental-and-Clinical-Pharmacology-and-Toxicology (DGPT) / 18th Annual Meeting of the Network-Clinical-Pharmacology-Germany (VKliPha)"],["dc.relation.eventlocation","Berlin, GERMANY"],["dc.relation.issn","1432-1912"],["dc.relation.issn","0028-1298"],["dc.title","The Insulin-like growth factor binding protein 5 (IGFBP5) - a potential developmental gene is regulated upon cardiac stress"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2013Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","928"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Stem Cells"],["dc.bibliographiccitation.lastpage","940"],["dc.bibliographiccitation.volume","31"],["dc.contributor.author","Renger, Anke"],["dc.contributor.author","Zafiriou, Maria-Patapia"],["dc.contributor.author","Noack, Claudia"],["dc.contributor.author","Pavlova, Elena"],["dc.contributor.author","Becker, Alexander"],["dc.contributor.author","Sharkova, Krasimira"],["dc.contributor.author","Bergmann, Martin W."],["dc.contributor.author","El-Armouche, Ali"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Zelarayán, Laura C."],["dc.date.accessioned","2017-09-07T11:47:43Z"],["dc.date.available","2017-09-07T11:47:43Z"],["dc.date.issued","2013"],["dc.description.abstract","The multiphasic regulation of the Wnt/beta-catenin canonical pathway is essential for cardiogenesis in vivo and in vitro. To achieve tight regulation of the Wnt/b-catenin signaling, tissue- and cell-specific coactivators and repressors need to be recruited. The identification of such factors may help to elucidate mechanisms leading to enhanced cardiac differentiation efficiency in vitro as well as promote regeneration in vivo. Using a yeast-two-hybrid screen, we identified four-and-a-half-LIM-domain 2 (FHL2) as a cardiac-specific beta-catenin interaction partner and activator of Wnt/beta-catenin-dependent transcription. We analyzed the role of this interaction for early cardiogenesis in an in vitro model by making use of embryoid body cultures from mouse embryonic stem cells (ESCs). In this model, stable FHL2 gain-of-function promoted mesodermal cell formation and cell proliferation while arresting cardiac differentiation in an early cardiogenic mesodermal progenitor state. Mechanistically, FHL2 overexpression enhanced nuclear accumulation of beta-catenin and activated Wnt/beta-catenin-dependent transcription leading to sustained upregulation of the early cardiogenic gene Igfbp5. In an alternative P19 cell model, transient FHL2 overexpression led to early activation of Wnt/beta-catenin-dependent transcription, but not sustained high-level of Igfbp5 expression. This resulted in enhanced cardiogenesis. We propose that early Wnt/beta-catenin-dependent transcriptional activation mediated by FHL2 is important for the transition to and expansion of early cardiogenic mesodermal cells. Collectively, our findings offer mechanistic insight into the early cardiogenic code and may be further exploited to enhance cardiac progenitor cell activity in vitro and in vivo. STEM CELLS 2013;31:928-940"],["dc.identifier.doi","10.1002/stem.1332"],["dc.identifier.gro","3142355"],["dc.identifier.isi","000318014100010"],["dc.identifier.pmid","23341242"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10650"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7364"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/49"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A02: Bedeutung des Phosphatase-Inhibitors-1 für die SR-spezifische Modulation der Beta- adrenozeptor-Signalkaskade"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation.issn","1066-5099"],["dc.relation.issn","1549-4918"],["dc.relation.workinggroup","RG El-Armouche"],["dc.relation.workinggroup","RG Zelarayán-Behrend (Developmental Pharmacology)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","The Four and a Half LIM-Domain 2 Controls Early Cardiac Cell Commitment and Expansion Via Regulating β-Catenin-Dependent Transcription"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Conference Abstract
    [["dc.bibliographiccitation.journal","Circulation Research"],["dc.bibliographiccitation.volume","117"],["dc.contributor.author","Noack, Claudia"],["dc.contributor.author","Iyer, Lavanya M."],["dc.contributor.author","Zafiriou, Maria-Patapia"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Zelarayan, Laura Cecilia"],["dc.date.accessioned","2018-11-07T09:54:34Z"],["dc.date.available","2018-11-07T09:54:34Z"],["dc.date.issued","2015"],["dc.identifier.isi","000374552800252"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36562"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Lippincott Williams & Wilkins"],["dc.publisher.place","Philadelphia"],["dc.relation.eventlocation","New Orleans, LA"],["dc.relation.issn","1524-4571"],["dc.relation.issn","0009-7330"],["dc.title","Loss of Krueppel-like Factor 15 (KLF15) Leads to Altered Wnt-dependent Gene Regulation in Hearts With Systolic Dysfunction"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2021Journal Article
    [["dc.bibliographiccitation.issue","Suppl_1"],["dc.bibliographiccitation.journal","Circulation Research"],["dc.bibliographiccitation.volume","129"],["dc.contributor.author","Schoger, Eric"],["dc.contributor.author","Rosa, Kim"],["dc.contributor.author","Rocha, Cheila"],["dc.contributor.author","Jassyk, Mareike"],["dc.contributor.author","Doroudgar, Shirin"],["dc.contributor.author","Mueller, Oliver"],["dc.contributor.author","Cyganek, Lukas"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Zelarayan, Laura Cecilia"],["dc.date.accessioned","2022-03-01T11:43:55Z"],["dc.date.available","2022-03-01T11:43:55Z"],["dc.date.issued","2021"],["dc.description.abstract","Transcriptional changes in cardiomyocytes drive heart failure progression, however, precise control over endogenous gene expression remains challenging. The expression of Krueppel-like factor 15 ( KLF15 ), an evolutionary conserved nuclear and cardiomyocyte specific inhibitor of WNT/CTNNB1 signalling in the heart, is lost upon cardiac remodelling, and accompanied by aberrantly active WNT/CTNNB1 resulting in heart failure progression. We investigated KLF15 expression dynamics employing CRISPR/Cas9-based tools in mouse cardiomyocytes in vivo and in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) under the hypothesis that re-establishment of KLF15 levels in myocardial stress conditions prevents heart failure progression. Using a mouse model expressing enzymatically inactive Cas9 (dCas9) fused to transcriptional activators (VPR) under Myh6 -promoter control, we activated Klf15 in a murine pressure overload model by transverse aortic constriction. Delivery of Klf15 gRNAs targeted to the Klf15 promoter region via AAV9 induced Klf15 expression sufficiently to re-normalize Klf15 expression to transcript levels comparable to sham surgery hearts. This was accompanied by reduced decrease of fractional shortening as well as reduced cardiomyocyte hypertrophy in stressed Klf15 re-activated hearts compared to non-trageted (NT) gRNA hearts (n=3-8 per group, echo data from 4 and 8 weeks post-surgery). We achieved titratable KLF15 activation in dCas9VPR transgenic hiPSC-CM by selection of single and multiple gRNAs (n=3-4 replicates) and used these cells to generate human engineered myocardium by combining hiPSC-CM and fibroblasts which we subjected to isometric contractions in order to induce mechanical stress, which resulted in KLF15 expressional decrease in line with our in vivo data. This transcriptional loss was rescued in CRISPR/dCas9VPR hiPSC-CM targeted to the KLF15 locus compared to controls (n=6-9/2/4 tissues per group/casting sessions/differentiations). Additionally, TGFB1 induced cardiomyocyte stress resulted in decreased KLF15 expression levels in 2D hiPSC-CM cultures which were rescued by dCas9VPR- KLF15 targeting (n=3 experiments). In conclusion, we report controllable gene activity by CRISPR/dCas9VPR to restore the loss of KLF15 in stressed mouse and human cardiomyocytes. We furthermore evaluate the potential to gain full control over gene dose titratability with these models to validate and define novel therapeutic targets for the prevention of heart failure progression."],["dc.description.abstract","Transcriptional changes in cardiomyocytes drive heart failure progression, however, precise control over endogenous gene expression remains challenging. The expression of Krueppel-like factor 15 ( KLF15 ), an evolutionary conserved nuclear and cardiomyocyte specific inhibitor of WNT/CTNNB1 signalling in the heart, is lost upon cardiac remodelling, and accompanied by aberrantly active WNT/CTNNB1 resulting in heart failure progression. We investigated KLF15 expression dynamics employing CRISPR/Cas9-based tools in mouse cardiomyocytes in vivo and in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) under the hypothesis that re-establishment of KLF15 levels in myocardial stress conditions prevents heart failure progression. Using a mouse model expressing enzymatically inactive Cas9 (dCas9) fused to transcriptional activators (VPR) under Myh6 -promoter control, we activated Klf15 in a murine pressure overload model by transverse aortic constriction. Delivery of Klf15 gRNAs targeted to the Klf15 promoter region via AAV9 induced Klf15 expression sufficiently to re-normalize Klf15 expression to transcript levels comparable to sham surgery hearts. This was accompanied by reduced decrease of fractional shortening as well as reduced cardiomyocyte hypertrophy in stressed Klf15 re-activated hearts compared to non-trageted (NT) gRNA hearts (n=3-8 per group, echo data from 4 and 8 weeks post-surgery). We achieved titratable KLF15 activation in dCas9VPR transgenic hiPSC-CM by selection of single and multiple gRNAs (n=3-4 replicates) and used these cells to generate human engineered myocardium by combining hiPSC-CM and fibroblasts which we subjected to isometric contractions in order to induce mechanical stress, which resulted in KLF15 expressional decrease in line with our in vivo data. This transcriptional loss was rescued in CRISPR/dCas9VPR hiPSC-CM targeted to the KLF15 locus compared to controls (n=6-9/2/4 tissues per group/casting sessions/differentiations). Additionally, TGFB1 induced cardiomyocyte stress resulted in decreased KLF15 expression levels in 2D hiPSC-CM cultures which were rescued by dCas9VPR- KLF15 targeting (n=3 experiments). In conclusion, we report controllable gene activity by CRISPR/dCas9VPR to restore the loss of KLF15 in stressed mouse and human cardiomyocytes. We furthermore evaluate the potential to gain full control over gene dose titratability with these models to validate and define novel therapeutic targets for the prevention of heart failure progression."],["dc.identifier.doi","10.1161/res.129.suppl_1.MP217"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/102874"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1524-4571"],["dc.relation.issn","0009-7330"],["dc.title","Abstract MP217: Nuclease-deficient Cas9 Transcription Factors Restore Krueppel-like Factor 15 Expression In Stressed Mouse And Human Cardiomyocytes"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI