Options
Rehling, Peter
Loading...
Preferred name
Rehling, Peter
Official Name
Rehling, Peter
Alternative Name
Rehling, P.
Main Affiliation
Now showing 1 - 10 of 22
2019Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e9561"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","EMBO Molecular Medicine"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Mohanraj, Karthik"],["dc.contributor.author","Wasilewski, Michal"],["dc.contributor.author","Benincá, Cristiane"],["dc.contributor.author","Cysewski, Dominik"],["dc.contributor.author","Poznanski, Jaroslaw"],["dc.contributor.author","Sakowska, Paulina"],["dc.contributor.author","Bugajska, Zaneta"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Fernandez‐Vizarra, Erika"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dadlez, Michal"],["dc.contributor.author","Zeviani, Massimo"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.date.accessioned","2019-07-09T11:51:37Z"],["dc.date.available","2019-07-09T11:51:37Z"],["dc.date.issued","2019"],["dc.description.abstract","Nuclear and mitochondrial genome mutations lead to various mitochondrial diseases, many of which affect the mitochondrial respiratory chain. The proteome of the intermembrane space (IMS) of mitochondria consists of several important assembly factors that participate in the biogenesis of mitochondrial respiratory chain complexes. The present study comprehensively analyzed a recently identified IMS protein cytochrome c oxidase assembly factor 7 (COA7), or RESpiratory chain Assembly 1 (RESA1) factor that is associated with a rare form of mitochondrial leukoencephalopathy and complex IV deficiency. We found that COA7 requires the mitochondrial IMS import and assembly (MIA) pathway for efficient accumulation in the IMS. We also found that pathogenic mutant versions of COA7 are imported slower than the wild‐type protein, and mislocalized proteins are degraded in the cytosol by the proteasome. Interestingly, proteasome inhibition rescued both the mitochondrial localization of COA7 and complex IV activity in patient‐derived fibroblasts. We propose proteasome inhibition as a novel therapeutic approach for a broad range of mitochondrial pathologies associated with the decreased levels of mitochondrial proteins."],["dc.identifier.doi","10.15252/emmm.201809561"],["dc.identifier.pmid","30885959"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16155"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59974"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/64"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/322424/EU//MITCARE"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/339580/EU//MITRAC"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","540"],["dc.title","Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2008Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2642"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.lastpage","2649"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Hutu, Dana P."],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Becker, Dorothea"],["dc.contributor.author","Pfanner, Nikolaus"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","van der Laan, Martin"],["dc.date.accessioned","2017-09-07T11:48:16Z"],["dc.date.available","2017-09-07T11:48:16Z"],["dc.date.issued","2008"],["dc.description.abstract","The presequence translocase of the mitochondrial inner membrane (TIM23 complex) mediates the import of preproteins with amino-terminal presequences. To drive matrix translocation the TIM23 complex recruits the presequence translocase-associated motor (PAM) with the matrix heat shock protein 70 (mtHsp70) as central subunit. Activity and localization of mtHsp70 are regulated by four membrane-associated cochaperones: the adaptor protein Tim44, the stimulatory J-complex Pam18/Pam16, and Pam17. It has been proposed that Tim44 serves as molecular platform to localize mtHsp70 and the J-complex at the TIM23 complex, but it is unknown how Pam17 interacts with the translocase. We generated conditional tim44 yeast mutants and selected a mutant allele, which differentially affects the association of PAM modules with TIM23. In tim44-804 mitochondria, the interaction of the J-complex with the TIM23 complex is impaired, whereas unexpectedly the binding of Pam17 is increased. Pam17 interacts with the channel protein Tim23, revealing a new interaction site between TIM23 and PAM. Thus, the motor PAM is composed of functional modules that bind to different sites of the translocase. We suggest that Tim44 is not simply a scaffold for binding of motor subunits but plays a differential role in the recruitment of PAM modules to the inner membrane translocase."],["dc.identifier.doi","10.1091/mbc.E07-12-1226"],["dc.identifier.gro","3143286"],["dc.identifier.isi","000259155200028"],["dc.identifier.pmid","18400944"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/783"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1939-4586"],["dc.relation.issn","1059-1524"],["dc.title","Mitochondrial protein import motor: Differential role of Tim44 in the recruitment of Pam17 and J-complex to the presequence translocase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2020-02-13Journal Article Research Paper [["dc.bibliographiccitation.journal","Journal of Molecular Biology"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Wasilewski, Michał"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Gibhardt, Christine Silvia"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","Chudenkova, Margarita"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Bogeski, Ivan"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2020-04-29T13:50:00Z"],["dc.date.available","2020-04-29T13:50:00Z"],["dc.date.issued","2020-02-13"],["dc.description.abstract","The mitochondrial cytochrome c oxidase, the terminal enzyme of the respiratory chain, contains heme and copper centers for electron transfer. The conserved COX2 subunit contains the CuA site, a binuclear copper center. The copper chaperones SCO1, SCO2, and COA6, are required for CuA center formation. Loss of function of these chaperones and the concomitant cytochrome c oxidase deficiency cause severe human disorders. Here we analyzed the molecular function of COA6 and the consequences of COA6 deficiency for mitochondria. Our analyses show that loss of COA6 causes combined complex I and complex IV deficiency and impacts membrane potential-driven protein transport across the inner membrane. We demonstrate that COA6 acts as a thiol-reductase to reduce disulfide bridges of critical cysteine residues in SCO1 and SCO2. Cysteines within the CX3CXNH domain of SCO2 mediate its interaction with COA6 but are dispensable for SCO2-SCO1 interaction. Our analyses define COA6 as thiol-reductase, which is essential for CuA biogenesis."],["dc.identifier.doi","10.1016/j.jmb.2020.01.036"],["dc.identifier.pmid","32061935"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/64482"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/339"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/110"],["dc.language.iso","en"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P17: Die Rolle mitochondrialer Kontaktstellen im Rahmen tumorrelevanter Calcium- und Redox-Signalwege"],["dc.relation.eissn","1089-8638"],["dc.relation.issn","0022-2836"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Bogeski"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","COA6 Facilitates Cytochrome c Oxidase Biogenesis as Thiol-reductase for Copper Metallochaperones in Mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2011Journal Article Research Paper [["dc.bibliographiccitation.firstpage","643"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","656"],["dc.bibliographiccitation.volume","195"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Melin, Jonathan"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Ficner, Ralf"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:43:19Z"],["dc.date.available","2017-09-07T11:43:19Z"],["dc.date.issued","2011"],["dc.description.abstract","N-terminal targeting signals (presequences) direct proteins across the TOM complex in the outer mitochondrial membrane and the TIM23 complex in the inner mitochondrial membrane. Presequences provide directionality to the transport process and regulate the transport machineries during translocation. However, surprisingly little is known about how presequence receptors interact with the signals and what role these interactions play during preprotein transport. Here, we identify signal-binding sites of presequence receptors through photo-affinity labeling. Using engineered presequence probes, photo cross-linking sites on mitochondrial proteins were mapped mass spectrometrically, thereby defining a presequence-binding domain of Tim50, a core subunit of the TIM23 complex that is essential for mitochondrial protein import. Our results establish Tim50 as the primary presequence receptor at the inner membrane and show that targeting signals and Tim50 regulate the Tim23 channel in an antagonistic manner."],["dc.identifier.doi","10.1083/jcb.201105098"],["dc.identifier.gro","3142630"],["dc.identifier.isi","000297206400012"],["dc.identifier.pmid","22065641"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8033"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/55"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Rockefeller Univ Press"],["dc.relation.issn","0021-9525"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Tim50's presequence receptor domain is essential for signal driven transport across the TIM23 complex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2018Journal Article [["dc.bibliographiccitation.artnumber","4028"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Bragoszewski, Piotr"],["dc.contributor.author","Naumenko, Nataliia"],["dc.contributor.author","Gomkale, Ridhima"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2020-04-29T13:50:43Z"],["dc.date.available","2020-04-29T13:50:43Z"],["dc.date.issued","2018"],["dc.description.abstract","The presequence translocase of the mitochondrial inner membrane (TIM23 complex) facilitates anterograde precursor transport into the matrix and lateral release of precursors with stop-transfer signal into the membrane (sorting). Sorting requires precursor exit from the translocation channel into the lipid phase through the lateral gate of the TIM23 complex. How the two transport modes are regulated and balanced against each other is unknown. Here we show that the import motor J-protein Pam18, which is essential for matrix import, controls lateral protein release into the lipid bilayer. Constitutively translocase-associated Pam18 obstructs lateral precursor transport. Concomitantly, Mgr2, implicated in precursor quality control, is displaced from the translocase. We conclude that during motor-dependent matrix protein transport, the transmembrane segment of Pam18 closes the lateral gate to promote anterograde polypeptide movement. This finding explains why a motor-free form of the translocase facilitates the lateral movement of precursors with a stop-transfer signal."],["dc.identifier.doi","10.1038/s41467-018-06492-8"],["dc.identifier.pmid","30279421"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15610"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/64487"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.eissn","2041-1723"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Motor recruitment to the TIM23 channel's lateral gate restricts polypeptide release into the inner membrane"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2005Journal Article Research Paper [["dc.bibliographiccitation.firstpage","817"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","829"],["dc.bibliographiccitation.volume","120"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Lind, Maria"],["dc.contributor.author","Frazier, Ann E."],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Meisinger, Chris"],["dc.contributor.author","Geissler, Andreas"],["dc.contributor.author","Sickmann, Albert"],["dc.contributor.author","Meyer, Helmut E."],["dc.contributor.author","Truscott, Kaye N."],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Pfanner, Nikolaus"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:54:31Z"],["dc.date.available","2017-09-07T11:54:31Z"],["dc.date.issued","2005"],["dc.description.abstract","The presequence translocase of the inner mitochondrial membrane (TIM23 complex) operates at a central junction of protein import. It accepts preproteins from the outer membrane TOM complex and directs them to inner membrane insertion or, in cooperation with the presequence translocase-associated motor (PAM), to the matrix. Little is known of how the TIM23 complex coordinates these tasks. We have identified Tim21 (YGR033c) that interacts with the TOM complex. Tim21 is specific for a TIM23 form that cooperates with TOM and promotes inner membrane insertion. Protein translocation into the matrix requires a switch to a Tim21-free, PAM bound presequence translocase. Tim17 is crucial for the switch by performing two separable functions: promotion of inner membrane insertion and binding of Pam18 to form the functional TIM-PAM complex. Thus, the presequence translocase is not a static complex but switches between TOM tethering and PAM binding in a reaction cycle involving Tim21 and Tim17."],["dc.identifier.doi","10.1016/j.cell.2005.01.011"],["dc.identifier.gro","3143878"],["dc.identifier.isi","000228067500011"],["dc.identifier.pmid","15797382"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1440"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0092-8674"],["dc.title","Mitochondrial presequence translocase: Switching between TOM tethering and motor recruitment involves Tim21 and Tim17"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2014Journal Article Research Paper [["dc.bibliographiccitation.firstpage","3473"],["dc.bibliographiccitation.issue","18"],["dc.bibliographiccitation.journal","Molecular and Cellular Biology"],["dc.bibliographiccitation.lastpage","3485"],["dc.bibliographiccitation.volume","34"],["dc.contributor.author","Melin, Jonathan"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Wrobel, Lidia"],["dc.contributor.author","Bernhard, Olaf"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:45:36Z"],["dc.date.available","2017-09-07T11:45:36Z"],["dc.date.issued","2014"],["dc.description.abstract","More than 70% of mitochondrial proteins utilize N-terminal presequences as targeting signals. Presequence interactions with redundant cytosolic receptor domains of the translocase of the outer mitochondrial membrane (TOM) are well established. However, after the presequence enters the protein-conducting Tom40 channel, the recognition events that occur at the trans side leading up to the engagement of the presequence with inner membrane-bound receptors are less well defined. Using a photoaffinity-labeling approach with modified presequence peptides, we identified Tom40 as a presequence interactor of the TOM complex. Utilizing mass spectrometry, we mapped Tom40's presequence-interacting regions to both sides of the beta-barrel. Analysis of a phosphorylation site within one of the presequence-interacting regions revealed altered translocation kinetics along the presequence pathway. Our analyses assess the relation between the identified presequence-binding region of Tom40 and the intermembrane space domain of Tom22. The identified presequence-interacting region of Tom40 is capable of functioning independently of the established trans-acting TOM presequence-binding domain during matrix import."],["dc.identifier.doi","10.1128/MCB.00433-14"],["dc.identifier.gro","3142065"],["dc.identifier.isi","000341024900010"],["dc.identifier.pmid","25002531"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4156"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1098-5549"],["dc.relation.issn","0270-7306"],["dc.title","Presequence Recognition by the Tom40 Channel Contributes to Precursor Translocation into the Mitochondrial Matrix"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2004Conference Paper Research Paper [["dc.bibliographiccitation.volume","32"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:43:09Z"],["dc.date.available","2017-09-07T11:43:09Z"],["dc.date.issued","2004"],["dc.description.abstract","Mitochondria of the yeast Saccharomyces cerevisiae contain at least 750 different proteins, which perform diverse roles. Most of these proteins (approx. 99%) are translated on cytosolic ribosomes, and their import into mitochondria is essential for mitochondrial function. Proteinaceous machineries of great complexity, the so-called translocases, in the mitochondrial membranes mediate the import of these proteins."],["dc.identifier.gro","3143933"],["dc.identifier.isi","000225149100034"],["dc.identifier.pmid","15494012"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1502"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Portland Press"],["dc.publisher.place","London"],["dc.relation.conference","Bioscience 2004 Conference"],["dc.relation.eventlocation","Glasgow, SCOTLAND"],["dc.relation.ispartof","Biochemical Society transactions"],["dc.relation.issn","0300-5127"],["dc.title","Moving proteins from the cytosol into mitochondria"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details PMID PMC WOS2021Journal Article Editorial Contribution (Editorial, Introduction, Epilogue) [["dc.bibliographiccitation.firstpage","973"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","FEBS Letters"],["dc.bibliographiccitation.lastpage","975"],["dc.bibliographiccitation.volume","595"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2021-06-01T09:41:01Z"],["dc.date.available","2021-06-01T09:41:01Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1002/1873-3468.14086"],["dc.identifier.pmid","33908035"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84798"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/425"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1873-3468"],["dc.relation.issn","0014-5793"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.title","Molecular bases of mitochondrial disorders"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","editorial_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2005Journal Article Research Paper [["dc.bibliographiccitation.firstpage","7449"],["dc.bibliographiccitation.issue","17"],["dc.bibliographiccitation.journal","Molecular and Cellular Biology"],["dc.bibliographiccitation.lastpage","7458"],["dc.bibliographiccitation.volume","25"],["dc.contributor.author","van der Laan, Martin"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Lind, Maria"],["dc.contributor.author","Perschil, Inge"],["dc.contributor.author","Sickmann, Albert"],["dc.contributor.author","Meyer, Helmut E."],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Meisinger, Chris"],["dc.contributor.author","Pfanner, Nikolaus"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:54:18Z"],["dc.date.available","2017-09-07T11:54:18Z"],["dc.date.issued","2005"],["dc.description.abstract","Import of mitochondrial matrix proteins involves the general translocase of the outer membrane and the presequence translocase of the inner membrane. The presequence translocase-associated motor (PAM) drives the completion of preprotein translocation into the matrix. Five subunits of PAM are known: the preprotein-binding matrix heat shock protein 70 (mtHsp70), the nucleotide exchange factor Mge1, Tim44 that directs mtHsp70 to the inner membrane, and the membrane-bound complex of Pam16-Pam18 that regulates the ATPase activity of mtHsp70. We have identified a sixth motor subunit. Pam17 (encoded by the open reading frame YKR065c) is anchored in the inner membrane and exposed to the matrix. Mitochondria lacking Pam17 are selectively impaired in the import of matrix proteins and the generation of an import-driving activity of PAM. Pam17 is required for formation of a stable complex between the cochaperones Pam16 and Pam18 and promotes the association of Pam16-Pam18 with the presequence translocase. Our findings suggest that Pam17 is required for the correct organization of the Pam16-Pam18 complex and thus contributes to regulation of mtHsp70 activity at the inner membrane translocation site."],["dc.identifier.doi","10.1128/MCB.25.17.7449-7458.2005"],["dc.identifier.gro","3143811"],["dc.identifier.isi","000231329300006"],["dc.identifier.pmid","16107694"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1366"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0270-7306"],["dc.title","Pam17 is required for architecture and translocation activity of the mitochondrial protein import motor"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS
- «
- 1 (current)
- 2
- 3
- »