Now showing 1 - 10 of 99
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2642"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.lastpage","2649"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Hutu, Dana P."],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Becker, Dorothea"],["dc.contributor.author","Pfanner, Nikolaus"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","van der Laan, Martin"],["dc.date.accessioned","2017-09-07T11:48:16Z"],["dc.date.available","2017-09-07T11:48:16Z"],["dc.date.issued","2008"],["dc.description.abstract","The presequence translocase of the mitochondrial inner membrane (TIM23 complex) mediates the import of preproteins with amino-terminal presequences. To drive matrix translocation the TIM23 complex recruits the presequence translocase-associated motor (PAM) with the matrix heat shock protein 70 (mtHsp70) as central subunit. Activity and localization of mtHsp70 are regulated by four membrane-associated cochaperones: the adaptor protein Tim44, the stimulatory J-complex Pam18/Pam16, and Pam17. It has been proposed that Tim44 serves as molecular platform to localize mtHsp70 and the J-complex at the TIM23 complex, but it is unknown how Pam17 interacts with the translocase. We generated conditional tim44 yeast mutants and selected a mutant allele, which differentially affects the association of PAM modules with TIM23. In tim44-804 mitochondria, the interaction of the J-complex with the TIM23 complex is impaired, whereas unexpectedly the binding of Pam17 is increased. Pam17 interacts with the channel protein Tim23, revealing a new interaction site between TIM23 and PAM. Thus, the motor PAM is composed of functional modules that bind to different sites of the translocase. We suggest that Tim44 is not simply a scaffold for binding of motor subunits but plays a differential role in the recruitment of PAM modules to the inner membrane translocase."],["dc.identifier.doi","10.1091/mbc.E07-12-1226"],["dc.identifier.gro","3143286"],["dc.identifier.isi","000259155200028"],["dc.identifier.pmid","18400944"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/783"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1939-4586"],["dc.relation.issn","1059-1524"],["dc.title","Mitochondrial protein import motor: Differential role of Tim44 in the recruitment of Pam17 and J-complex to the presequence translocase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2008Conference Abstract
    [["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta (BBA) - Bioenergetics"],["dc.bibliographiccitation.volume","1777"],["dc.contributor.author","Wagner, Karina"],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Brandner, Katrin"],["dc.contributor.author","Pfanner, Nikolaus"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2018-11-07T11:12:55Z"],["dc.date.available","2018-11-07T11:12:55Z"],["dc.date.issued","2008"],["dc.format.extent","S42"],["dc.identifier.doi","10.1016/j.bbabio.2008.05.168"],["dc.identifier.isi","000258037700158"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/53773"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Bv"],["dc.publisher.place","Amsterdam"],["dc.relation.conference","15th European Bioenergetic Conference"],["dc.relation.eventlocation","Trinity Coll, Dublin, IRELAND"],["dc.relation.issn","0005-2728"],["dc.title","Biogenesis of the mitochondrial carrier translocase"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2002Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","7780"],["dc.bibliographiccitation.issue","22"],["dc.bibliographiccitation.journal","Molecular and Cellular Biology"],["dc.bibliographiccitation.lastpage","7789"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Truscott, Kaye N."],["dc.contributor.author","Wiedemann, Nils"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Muller, H"],["dc.contributor.author","Meisinger, Chris"],["dc.contributor.author","Pfanner, Nikolaus"],["dc.contributor.author","Guiard, Bernard"],["dc.date.accessioned","2017-09-07T11:45:14Z"],["dc.date.available","2017-09-07T11:45:14Z"],["dc.date.issued","2002"],["dc.description.abstract","The mitochondrial intermembrane space contains a protein complex essential for cell viability, the Tim9-Tim10 complex. This complex is required for the import of hydrophobic membrane proteins, such as the ADP/ATP carrier (AAC), into the inner membrane. Different views exist about the role played by the Tim9-Tim10 complex in translocation of the AAC precursor across the outer membrane. For this report we have generated a new tim10 yeast mutant that leads to a strong defect in AAC import into mitochondria. Thereby, for the first time, authentic AAC is stably arrested in the translocase complex of the outer membrane (TOM), as shown by antibody shift blue native electrophoresis. Surprisingly, AAC is still associated with the receptors Tom70 and Tom20 when the function of Tim10 is impaired. The nonessential Tim8-Tim13 complex of the intermembrane space is not involved in the transfer of AAC across the outer membrane. These results define a two-step mechanism for translocation of AAC across the outer membrane. The initial insertion of AAC into the import channel is independent of the function of Tim9-Tim10; however, completion of translocation across the outer membrane, including release from the TOM complex, requires a functional Tim9-Tim10 complex."],["dc.identifier.doi","10.1128/MCB.22.22.7780-7789.2002"],["dc.identifier.gro","3144157"],["dc.identifier.isi","000178953700006"],["dc.identifier.pmid","12391147"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1750"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1098-5549"],["dc.relation.issn","0270-7306"],["dc.title","Mitochondrial import of the ADP/ATP carrier: The essential TIM complex of the intermembrane space is required for precursor release from the TOM complex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 1997Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","83"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","92"],["dc.bibliographiccitation.volume","89"],["dc.contributor.author","Albertini, M."],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Erdmann, R."],["dc.contributor.author","Girzalsky, W"],["dc.contributor.author","Kiel, J. A. K. W."],["dc.contributor.author","Veenhuis, Marten"],["dc.contributor.author","Kunau, W. H."],["dc.date.accessioned","2017-09-07T11:50:57Z"],["dc.date.available","2017-09-07T11:50:57Z"],["dc.date.issued","1997"],["dc.description.abstract","Pex14p, an S. cerevisiae peroxin, is attached to the outer face of the peroxisomal membrane and is a component of the protein import machinery. Pex14p interacts with both the PTS1 and PTS2 receptors. It is the only known peroxisomal membrane protein that binds the PTS2 receptor and might thus mediate the membrane docking event of PTS2-dependent protein import. These results suggest that the two import pathways overlap and, furthermore, that Pex14p represents the point of convergence. Pex14p also interacts with two other membrane-bound peroxins including Pex13p, another binding protein for the PTS1 receptor. The data presented here are consistent with the idea of a common translocation machinery for both PTS-dependent protein import pathways in the peroxisomal membrane."],["dc.identifier.doi","10.1016/S0092-8674(00)80185-3"],["dc.identifier.gro","3144606"],["dc.identifier.isi","A1997WR68500012"],["dc.identifier.pmid","9094717"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2249"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Cell Press"],["dc.relation.issn","0092-8674"],["dc.title","Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 1993Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","387"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Plant Molecular Biology"],["dc.bibliographiccitation.lastpage","396"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","BARTLING, D."],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","WEILER, E. W"],["dc.date.accessioned","2017-09-07T11:51:32Z"],["dc.date.available","2017-09-07T11:51:32Z"],["dc.date.issued","1993"],["dc.description.abstract","The first member of a novel subfamily of ubiquitin-conjugating E2-proteins was cloned from a cDNA library of Arabidopsis thaliana. Genomic blots indicate that this gene family (AtUBC2) consists of two members and is distinct from AtUBC1, the only other E2 enzyme known from this species to date (M.L. Sullivan and R.D. Vierstra, Proc. Natl. Acad. Sci. USA 86 (1989) 9861-9865). The cDNA sequence of AtUBC2-1 extends over 794 bp which would encode a protein of 161 amino acids and a calculated molecular mass of 18.25 kDa. The protein encoded by AtUBC2-1 is shown to accept I-125-ubiquitin from wheat E1 enzymes, when expressed from Escherichia coli hosts as fusion protein carrying N-terminal extensions. It is deubiquitinated in the presence of lysine and, by these criteria, is considered a functional E2 enzyme."],["dc.identifier.doi","10.1007/BF00029013"],["dc.identifier.gro","3144767"],["dc.identifier.isi","A1993MD51700014"],["dc.identifier.pmid","8219072"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2427"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Kluwer Academic Publ"],["dc.relation.issn","0167-4412"],["dc.title","FUNCTIONAL EXPRESSION AND MOLECULAR CHARACTERIZATION OF ATUBC2-1, A NOVEL UBIQUITIN-CONJUGATING ENZYME (E2) FROM ARABIDOPSIS-THALIANA"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","4349"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:46:11Z"],["dc.date.available","2017-09-07T11:46:11Z"],["dc.date.issued","2014"],["dc.description.abstract","Proteins with N-terminal targeting signals are transported across the inner mitochondrial membrane by the presequence translocase. To drive precursor translocation, the Hsp70-import motor associates with the protein-conducting channel of the TIM23 complex. It is unknown how the ATPase cycle of Hsp70 is regulated in the context of a translocating polypeptide chain. Here we establish an assay to monitor protein dynamics in the precursor-occupied presequence translocase and find that regulatory subunits of the import motor, such as the ATPase-stimulating J-protein Pam18, are recruited into the translocation intermediate. The presence of all Hsp70 co-chaperones at the import channel is not sufficient to promote matrix protein import, instead a recharging of the active translocase with Pam18 is required for motor activity. Thus, a replenishment cycle of co-chaperones at the TIM23 complex is an integral part of Hsp70's ATPase cycle at the channel exit site and essential to maintain motor-driven mitochondrial protein import."],["dc.format.extent","1"],["dc.identifier.doi","10.1038/ncomms5349"],["dc.identifier.gro","3142095"],["dc.identifier.isi","000340615500040"],["dc.identifier.pmid","25008211"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4489"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2041-1723"],["dc.title","Remodelling of the active presequence translocase drives motor-dependent mitochondrial protein translocation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1457"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","1466"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Lupo, Domenico"],["dc.contributor.author","Vollmer, Christine"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Mick, David U."],["dc.contributor.author","Tews, Ivo"],["dc.contributor.author","Sinning, Irmgard"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:43:24Z"],["dc.date.available","2017-09-07T11:43:24Z"],["dc.date.issued","2011"],["dc.description.abstract","Mitochondrial ribosomes synthesize core subunits of the inner membrane respiratory chain complexes. In mitochondria, translation is regulated by mRNA-specific activator proteins and occurs on membrane-associated ribosomes. Mdm38/Letm1 is a conserved membrane receptor for mitochondrial ribosomes and specifically involved in respiratory chain biogenesis. In addition, Mdm38 and its higher eukaryotic homolog Letm1, function as K+/H+ or Ca2+/H+ antiporters in the inner membrane. Here, we identify the conserved ribosome-binding domain (RBD) of Mdm38 and determine the crystal structure at 2.1 angstrom resolution. Surprisingly, Mdm38(RBD) displays a 14-3-3-like fold despite any similarity to 14-3-3-proteins at the primary sequence level and thus represents the first 14-3-3-like protein in mitochondria. The 14-3-3-like domain is critical for respiratory chain assembly through regulation of Cox1 and Cytb translation. We show that this function can be spatially separated from the ion transport activity of the membrane integrated portion of Mdm38. On the basis of the phenotypes observed for mdm38 Delta as compared to Mdm38 lacking the RBD, we suggest a model that combining ion transport and translational regulation into one molecule allows for direct coupling of ion flux across the inner membrane, and serves as a signal for the translation of mitochondrial membrane proteins via its direct association with the protein synthesis machinery."],["dc.identifier.doi","10.1111/j.1600-0854.2011.01239.x"],["dc.identifier.gro","3142664"],["dc.identifier.isi","000295052500017"],["dc.identifier.pmid","21718401"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/93"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: DFG [FOR967]; Max-Planck Society"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1600-0854"],["dc.relation.issn","1398-9219"],["dc.title","Mdm38 is a 14-3-3-Like Receptor and Associates with the Protein Synthesis Machinery at the Inner Mitochondrial Membrane"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1694"],["dc.bibliographiccitation.issue","21"],["dc.bibliographiccitation.journal","Circulation"],["dc.bibliographiccitation.lastpage","1713"],["dc.bibliographiccitation.volume","144"],["dc.contributor.author","Bertero, Edoardo"],["dc.contributor.author","Nickel, Alexander"],["dc.contributor.author","Kohlhaas, Michael"],["dc.contributor.author","Hohl, Mathias"],["dc.contributor.author","Sequeira, Vasco"],["dc.contributor.author","Brune, Carolin"],["dc.contributor.author","Schwemmlein, Julia"],["dc.contributor.author","Abeßer, Marco"],["dc.contributor.author","Schuh, Kai"],["dc.contributor.author","Kutschka, Ilona"],["dc.contributor.author","Carlein, Christopher"],["dc.contributor.author","Münker, Kai"],["dc.contributor.author","Atighetchi, Sarah"],["dc.contributor.author","Müller, Andreas"],["dc.contributor.author","Kazakov, Andrey"],["dc.contributor.author","Kappl, Reinhard"],["dc.contributor.author","von der Malsburg, Karina"],["dc.contributor.author","van der Laan, Martin"],["dc.contributor.author","Schiuma, Anna-Florentine"],["dc.contributor.author","Böhm, Michael"],["dc.contributor.author","Laufs, Ulrich"],["dc.contributor.author","Hoth, Markus"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Kuhn, Michaela"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","von der Malsburg, Alexander"],["dc.contributor.author","Prates Roma, Leticia"],["dc.contributor.author","Maack, Christoph"],["dc.date.accessioned","2022-02-22T13:45:03Z"],["dc.date.available","2022-02-22T13:45:03Z"],["dc.date.issued","2021"],["dc.description.abstract","Barth syndrome (BTHS) is caused by mutations of the gene encoding tafazzin, which catalyzes maturation of mitochondrial cardiolipin and often manifests with systolic dysfunction during early infancy. Beyond the first months of life, BTHS cardiomyopathy typically transitions to a phenotype of diastolic dysfunction with preserved ejection fraction, blunted contractile reserve during exercise, and arrhythmic vulnerability. Previous studies traced BTHS cardiomyopathy to mitochondrial formation of reactive oxygen species (ROS). Because mitochondrial function and ROS formation are regulated by excitation-contraction coupling, integrated analysis of mechano-energetic coupling is required to delineate the pathomechanisms of BTHS cardiomyopathy."],["dc.identifier.doi","10.1161/CIRCULATIONAHA.121.053755"],["dc.identifier.pmid","34648376"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/100184"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/410"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/357"],["dc.language.iso","en"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation.eissn","1524-4539"],["dc.relation.issn","0009-7322"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.title","Loss of Mitochondrial Ca2+ Uniporter Limits Inotropic Reserve and Provides Trigger and Substrate for Arrhythmias in Barth Syndrome Cardiomyopathy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Conference Abstract
    [["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Naumenko, N."],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2018-11-07T10:19:35Z"],["dc.date.available","2018-11-07T10:19:35Z"],["dc.date.issued","2016"],["dc.identifier.isi","000396047200471"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41691"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Cell Biology"],["dc.publisher.place","Bethesda"],["dc.relation.conference","Annual Meeting of the American-Society-for-Cell-Biology (ASCB)"],["dc.relation.eventlocation","San Francisco, CA"],["dc.relation.issn","1939-4586"],["dc.relation.issn","1059-1524"],["dc.title","INA complex links assembly of the nuclear- and mitochondrial-encoded modules of ATP synthase."],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2011Journal Article Discussion
    [["dc.bibliographiccitation.artnumber","401"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Nature Reviews Molecular Cell Biology"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:44:10Z"],["dc.date.available","2017-09-07T11:44:10Z"],["dc.date.issued","2011"],["dc.identifier.doi","10.1038/nrm3137"],["dc.identifier.gro","3142709"],["dc.identifier.isi","000291973400003"],["dc.identifier.pmid","21654705"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/143"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1471-0072"],["dc.title","Tinkering with Nature"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","letter_note"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS