Now showing 1 - 2 of 2
  • 2013Journal Article
    [["dc.bibliographiccitation.artnumber","e80068"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","PLoS One"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Schneider, David"],["dc.contributor.author","Baronsky, Thilo"],["dc.contributor.author","Pietuch, Anna"],["dc.contributor.author","Rother, Jan"],["dc.contributor.author","Oelkers, Marieelen"],["dc.contributor.author","Fichtner, Dagmar"],["dc.contributor.author","Wedlich, Doris"],["dc.contributor.author","Janshoff, Andreas"],["dc.date.accessioned","2018-11-07T09:16:39Z"],["dc.date.available","2018-11-07T09:16:39Z"],["dc.date.issued","2013"],["dc.description.abstract","Structural alterations during epithelial-to-mesenchymal transition (EMT) pose a substantial challenge to the mechanical response of cells and are supposed to be key parameters for an increased malignancy during metastasis. Herein, we report that during EMT, apical tension of the epithelial cell line NMuMG is controlled by cell-cell contacts and the architecture of the underlying actin structures reflecting the mechanistic interplay between cellular structure and mechanics. Using force spectroscopy we find that tension in NMuMG cells slightly increases 24 h after EMT induction, whereas upon reaching the final mesenchymal-like state characterized by a complete loss of intercellular junctions and a concerted down-regulation of the adherens junction protein E-cadherin, the overall tension becomes similar to that of solitary adherent cells and fibroblasts. Interestingly, the contribution of the actin cytoskeleton on apical tension increases significantly upon EMT induction, most likely due to the formation of stable and highly contractile stress fibers which dominate the elastic properties of the cells after the transition. The structural alterations lead to the formation of single, highly motile cells rendering apical tension a good indicator for the cellular state during phenotype switching. In summary, our study paves the way towards a more profound understanding of cellular mechanics governing fundamental morphological programs such as the EMT."],["dc.description.sponsorship","Open-Acces-Publikationsfonds 2013"],["dc.identifier.doi","10.1371/journal.pone.0080068"],["dc.identifier.isi","000328566100009"],["dc.identifier.pmid","24339870"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9505"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/27979"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 2.5"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.5"],["dc.title","Tension Monitoring during Epithelial-to-Mesenchymal Transition Links the Switch of Phenotype to Expression of Moesin and Cadherins in NMuMG Cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article
    [["dc.bibliographiccitation.firstpage","254"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Nanotoxicology"],["dc.bibliographiccitation.lastpage","268"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Tarantola, Marco"],["dc.contributor.author","Pietuch, Anna"],["dc.contributor.author","Schneider, David"],["dc.contributor.author","Rother, Jan"],["dc.contributor.author","Sunnick, Eva"],["dc.contributor.author","Rosman, Christina"],["dc.contributor.author","Pierrat, Sebastien"],["dc.contributor.author","Soennichsen, Carsten"],["dc.contributor.author","Wegener, Joachim"],["dc.contributor.author","Janshoff, Andreas"],["dc.date.accessioned","2018-11-07T08:55:39Z"],["dc.date.available","2018-11-07T08:55:39Z"],["dc.date.issued","2011"],["dc.description.abstract","Nanoparticle exposure is monitored by a combination of two label-free and non-invasive biosensor devices which detect cellular shape and viscoelasticity (quartz crystal microbalance), cell motility and the dynamics of epithelial cell-cell contacts (electric cell-substrate impedance sensing). With these tools we have studied the impact of nanoparticle shape on cellular physiology. Gold (Au) nanoparticles coated with CTAB were synthesized and studied in two distinct shapes: Spheres with a diameter of (43 +/-+/- 4) nm and rods with a size of (38 +/-+/- 7) nm xx (17 +/-+/- 3) nm. Dose-response experiments were accompanied by conventional cytotoxicity tests as well as fluorescence and dark-field microscopy to visualize the intracellular particle distribution. We found that spherical gold nanoparticles with identical surface functionalization are generally more toxic and more efficiently ingested than rod-shaped particles. We largely attribute the higher toxicity of CTAB-coated spheres as compared to rod-shaped particles to a higher release of toxic CTAB upon intracellular aggregation."],["dc.description.sponsorship","German Science Foundation (DFG) [JA 963/10-1]"],["dc.identifier.doi","10.3109/17435390.2010.528847"],["dc.identifier.isi","000290936000013"],["dc.identifier.pmid","21050076"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/22954"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Taylor & Francis Ltd"],["dc.relation.issn","1743-5404"],["dc.relation.issn","1743-5390"],["dc.title","Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS