Now showing 1 - 5 of 5
  • 2022Journal Article
    [["dc.bibliographiccitation.artnumber","1011109"],["dc.bibliographiccitation.journal","Frontiers in Cell and Developmental Biology"],["dc.bibliographiccitation.volume","10"],["dc.contributor.affiliation","Nguyen, Huong; \r\n1\r\nInstitute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany"],["dc.contributor.affiliation","Sokpor, Godwin; \r\n1\r\nInstitute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany"],["dc.contributor.affiliation","Parichha, Arpan; \r\n5\r\nTata Institute of Fundamental Research, Mumbai, India"],["dc.contributor.affiliation","Pham, Linh; \r\n1\r\nInstitute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany"],["dc.contributor.affiliation","Saikhedkar, Nidhi; \r\n5\r\nTata Institute of Fundamental Research, Mumbai, India"],["dc.contributor.affiliation","Xie, Yuanbin; \r\n1\r\nInstitute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany"],["dc.contributor.affiliation","Ulmke, Pauline Antonie; \r\n1\r\nInstitute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany"],["dc.contributor.affiliation","Rosenbusch, Joachim; \r\n1\r\nInstitute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany"],["dc.contributor.affiliation","Pirouz, Mehdi; \r\n6\r\nMax Planck Institute for Multidisciplinary Sciences, Goettingen, Germany"],["dc.contributor.affiliation","Behr, Rüdiger; \r\n8\r\nGerman Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany"],["dc.contributor.affiliation","Stoykova, Anastassia; \r\n6\r\nMax Planck Institute for Multidisciplinary Sciences, Goettingen, Germany"],["dc.contributor.affiliation","Brand-Saberi, Beate; \r\n4\r\nDepartment of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany"],["dc.contributor.affiliation","Nguyen, Huu Phuc; \r\n3\r\nDepartment of Human Genetics, Ruhr University Bochum, Bochum, Germany"],["dc.contributor.affiliation","Staiger, Jochen F.; \r\n1\r\nInstitute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany"],["dc.contributor.affiliation","Tole, Shubha; \r\n5\r\nTata Institute of Fundamental Research, Mumbai, India"],["dc.contributor.affiliation","Tuoc, Tran; \r\n1\r\nInstitute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany"],["dc.contributor.author","Nguyen, Huong"],["dc.contributor.author","Sokpor, Godwin"],["dc.contributor.author","Parichha, Arpan"],["dc.contributor.author","Pham, Linh"],["dc.contributor.author","Saikhedkar, Nidhi"],["dc.contributor.author","Xie, Yuanbin"],["dc.contributor.author","Ulmke, Pauline Antonie"],["dc.contributor.author","Rosenbusch, Joachim"],["dc.contributor.author","Pirouz, Mehdi"],["dc.contributor.author","Behr, Rüdiger"],["dc.contributor.author","Tuoc, Tran"],["dc.contributor.author","Stoykova, Anastassia"],["dc.contributor.author","Brand-Saberi, Beate"],["dc.contributor.author","Nguyen, Huu Phuc"],["dc.contributor.author","Staiger, Jochen F."],["dc.contributor.author","Tole, Shubha"],["dc.date.accessioned","2022-11-01T10:17:17Z"],["dc.date.available","2022-11-01T10:17:17Z"],["dc.date.issued","2022"],["dc.date.updated","2022-11-11T13:12:49Z"],["dc.description.abstract","Early forebrain patterning entails the correct regional designation of the neuroepithelium, and appropriate specification, generation, and distribution of neural cells during brain development. Specific signaling and transcription factors are known to tightly regulate patterning of the dorsal telencephalon to afford proper structural/functional cortical arealization and morphogenesis. Nevertheless, whether and how changes of the chromatin structure link to the transcriptional program(s) that control cortical patterning remains elusive. Here, we report that the BAF chromatin remodeling complex regulates the spatiotemporal patterning of the mouse dorsal telencephalon. To determine whether and how the BAF complex regulates cortical patterning, we conditionally deleted the BAF complex scaffolding subunits BAF155 and BAF170 in the mouse dorsal telencephalic neuroepithelium. Morphological and cellular changes in the BAF mutant forebrain were examined using immunohistochemistry and\r\n in situ\r\n hybridization. RNA sequencing, Co-immunoprecipitation, and mass spectrometry were used to investigate the molecular basis of BAF complex involvement in forebrain patterning. We found that conditional ablation of BAF complex in the dorsal telencephalon neuroepithelium caused expansion of the cortical hem and medial cortex beyond their developmental boundaries. Consequently, the hippocampal primordium is not specified, the mediolateral cortical patterning is compromised, and the cortical identity is disturbed in the absence of BAF complex. The BAF complex was found to interact with the cortical hem suppressor LHX2. The BAF complex suppresses cortical hem fate to permit proper forebrain patterning. We provide evidence that BAF complex modulates mediolateral cortical patterning possibly by interacting with the transcription factor LHX2 to drive the LHX2-dependent transcriptional program essential for dorsal telencephalon patterning. Our data suggest a putative mechanistic synergy between BAF chromatin remodeling complex and LHX2 in regulating forebrain patterning and ontogeny."],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship"," National Institute of Diabetes and Digestive and Kidney Diseases http://dx.doi.org/10.13039/100000062"],["dc.identifier.doi","10.3389/fcell.2022.1011109"],["dc.identifier.pmid","36263009"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/116773"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-605"],["dc.publisher","Frontiers Media S.A."],["dc.relation.eissn","2296-634X"],["dc.relation.issn","2296-634X"],["dc.relation.orgunit","Deutsches Primatenzentrum"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","BAF (mSWI/SNF) complex regulates mediolateral cortical patterning in the developing forebrain"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","4618"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Molecular Neurobiology"],["dc.bibliographiccitation.lastpage","4635"],["dc.bibliographiccitation.volume","54"],["dc.contributor.author","Tuoc, Tran"],["dc.contributor.author","Dere, Ekrem"],["dc.contributor.author","Radyushkin, Konstantin"],["dc.contributor.author","Pham, Linh"],["dc.contributor.author","Nguyen, Huong"],["dc.contributor.author","Tonchev, Anton B."],["dc.contributor.author","Sun, Guoqiang"],["dc.contributor.author","Ronnenberg, Anja"],["dc.contributor.author","Shi, Yanhong"],["dc.contributor.author","Staiger, Jochen F."],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.contributor.author","Stoykova, Anastassia"],["dc.date.accessioned","2017-09-07T11:46:21Z"],["dc.date.available","2017-09-07T11:46:21Z"],["dc.date.issued","2016"],["dc.description.abstract","The BAF chromatin remodeling complex plays an essential role in brain development. However its function in postnatal neurogenesis in hippocampus is still unknown. Here, we show that in postnatal dentate gyrus (DG), the BAF170 subunit of the complex is expressed in radial glial-like (RGL) progenitors and in cell types involved in subsequent steps of adult neurogenesis including mature astrocytes. Conditional deletion of BAF170 during cortical late neurogenesis as well as during adult brain neurogenesis depletes the pool of RGL cells in DG, and promotes terminal astrocyte differentiation. These derangements are accompanied by distinct behavioral deficits, as reflected by an impaired accuracy of place responding in the Morris water maze test, during both hidden platform as well as reversal learning. Inducible deletion of BAF170 in DG during adult brain neurogenesis resulted in mild spatial learning deficits, having a more pronounced effect on spatial learning during the reversal test. These findings demonstrate involvement of BAF170-dependent chromatin remodeling in hippocampal neurogenesis and cognition and suggest a specific role of adult neurogenesis in DG in adaptive behavior."],["dc.identifier.doi","10.1007/s12035-016-9948-5"],["dc.identifier.gro","3150498"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14191"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7269"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","0893-7648"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Ablation of BAF170 in developing and postnatal dentate gyrus affects neural stem cell proliferation, differentiation, and learning"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article
    [["dc.bibliographiccitation.artnumber","e1006274"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","PLoS Genetics"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Bachmann, Christina"],["dc.contributor.author","Nguyen, Huong"],["dc.contributor.author","Rosenbusch, Joachim"],["dc.contributor.author","Pham, Linh"],["dc.contributor.author","Rabe, Tamara I."],["dc.contributor.author","Patwa, Megha"],["dc.contributor.author","Sokpor, Godwin"],["dc.contributor.author","Seong, Rho H."],["dc.contributor.author","Ashery-Padan, Ruth"],["dc.contributor.author","Mansouri, Ahmed"],["dc.contributor.author","Stoykova, Anastassia"],["dc.contributor.author","Staiger, Jochen F."],["dc.contributor.author","Tuoc, Tran"],["dc.date.accessioned","2018-11-07T10:09:05Z"],["dc.date.available","2018-11-07T10:09:05Z"],["dc.date.issued","2016"],["dc.description.abstract","Neurogenesis is a key developmental event through which neurons are generated from neural stem/progenitor cells. Chromatin remodeling BAF (mSWI/SNF) complexes have been reported to play essential roles in the neurogenesis of the central nervous system. However, whether BAF complexes are required for neuron generation in the olfactory system is unknown. Here, we identified onscBAF and ornBAF complexes, which are specifically present in olfactory neural stem cells (oNSCs) and olfactory receptor neurons (ORNs), respectively. We demonstrated that BAF155 subunit is highly expressed in both oNSCs and ORNs, whereas high expression of BAF170 subunit is observed only in ORNs. We report that conditional deletion of BAF155, a core subunit in both onscBAF and ornBAF complexes, causes impaired proliferation of oNSCs as well as defective maturation and axonogenesis of ORNs in the developing olfactory epithelium (OE), while the high expression of BAF170 is important for maturation of ORNs. Interestingly, in the absence of BAF complexes in BAF155/BAF170 double-conditional knockout mice (dcKO), OE is not specified. Mechanistically, BAF complex is required for normal activation of Pax6-dependent transcriptional activity in stem cells/progenitors of the OE. Our findings unveil a novel mechanism mediated by the mSWI/SNF complex in OE neurogenesis and development."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2016"],["dc.identifier.doi","10.1371/journal.pgen.1006274"],["dc.identifier.isi","000386069000012"],["dc.identifier.pmid","27611684"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13696"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39592"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","1553-7404"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","mSWI/SNF (BAF) Complexes Are Indispensable for the Neurogenesis and Development of Embryonic Olfactory Epithelium"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1842"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","1854"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Narayanan, Ramanathan"],["dc.contributor.author","Pirouz, Mehdi"],["dc.contributor.author","Kerimoglu, Cemil"],["dc.contributor.author","Pham, Linh"],["dc.contributor.author","Wagener, Robin J."],["dc.contributor.author","Kiszka, Kamila A."],["dc.contributor.author","Rosenbusch, Joachim"],["dc.contributor.author","Seong, Rho H."],["dc.contributor.author","Kessel, Michael"],["dc.contributor.author","Fischer, Andre"],["dc.contributor.author","Stoykova, Anastassia"],["dc.contributor.author","Staiger, Jochen F."],["dc.contributor.author","Tuoc, Tran"],["dc.date.accessioned","2017-09-07T11:54:50Z"],["dc.date.available","2017-09-07T11:54:50Z"],["dc.date.issued","2015"],["dc.description.abstract","BAF (Brg/Brm-associated factors) complexes play important roles in development and are linked to chromatin plasticity at selected genomic loci. Nevertheless, a full understanding of their role in development and chromatin remodeling has been hindered by the absence of mutants completely lacking BAF complexes. Here, we report that the loss of BAF155/BAF170 in double-conditional knockout (dcKO) mice eliminates all known BAF subunits, resulting in an overall reduction in active chromatin marks (H3K9Ac), a global increase in repressive marks (H3K27me2/3), and downregulation of gene expression. We demonstrate that BAF complexes interact with H3K27 demethylases (JMJD3 and UTX) and potentiate their activity. Importantly, BAF complexes are indispensable for forebrain development, including proliferation, differentiation, and cell survival of neural progenitor cells. Our findings reveal a molecular mechanism mediated by BAF complexes that controls the global transcriptional program and chromatin state in development."],["dc.description.sponsorship","Open-Access Publikationsfonds 2015"],["dc.identifier.doi","10.1016/j.celrep.2015.10.046"],["dc.identifier.gro","3141775"],["dc.identifier.isi","000366047000012"],["dc.identifier.pmid","26655900"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12641"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/935"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Cell Press"],["dc.relation.issn","2211-1247"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Loss of BAF (mSWI/SNF) Complexes Causes Global Transcriptional and Chromatin State Changes in Forebrain Development"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.artnumber","65"],["dc.bibliographiccitation.journal","Molecular Brain"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Tonchev, Anton B."],["dc.contributor.author","Tran Cong Tuoc, Tran Cong Tuoc"],["dc.contributor.author","Rosenthal, Eva H."],["dc.contributor.author","Studer, Michele"],["dc.contributor.author","Stoykova, Anastassia"],["dc.date.accessioned","2018-11-07T10:12:49Z"],["dc.date.available","2018-11-07T10:12:49Z"],["dc.date.issued","2016"],["dc.description.abstract","Background: During corticogenesis, genetic programs encoded in progenitor cells at different developmental stages and inherited in postmitotic neurons specify distinct layer and area identities. Transcription factor Zbtb20 has been shown to play a role for hippocampal development but whether it is implicated in mammalian neocortical morphogenesis remains unknown. Results: Here, we report that during embyogenesis transcription factor Zbtb20 has a dynamic spatio-temporal expression pattern in mitotic cortical progenitors through which it modulates the sequential generation of cortical neuronal layer identities. Zbtb20 knock out mice exhibited enhanced populations of early born L6-L4 neuronal subtypes and a dramatic reduction of the late born L3/L2 neurons. This defect was due to a temporal misbalance in the production of earlier versus later born neurons, leading to a progressive diminishing of the progenitor pool for the generation of L3-L2 neurons. Zbtb20 implements these temporal effects in part by binding to promoter of the orphan nuclear receptor CoupTF1/Nr2f1. In addition to its effects exerted in cortical progenitors, the postmitotic expression of Zbtb20 in L3/L2 neurons starting at birth may contribute to their proper differentiation and migration. Conclusions: Our findings reveal Zbtb20 as a novel temporal regulator for the generation of layer-specific neuronal identities."],["dc.identifier.doi","10.1186/s13041-016-0242-2"],["dc.identifier.isi","378381000001"],["dc.identifier.pmid","27282384"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13342"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40314"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Biomed Central Ltd"],["dc.relation.issn","1756-6606"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Zbtb20 modulates the sequential generation of neuronal layers in developing cortex"],["dc.title.original","13342"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS