Repository logoRepository logo
GRO
  • GRO.data
  • GRO.plan
Help
  • English
  • Deutsch
  • Log In
    Members of the University of Göttingen: Login via the GWDG account (user name only, without e-mail/domain extension) and the corresponding password.
    Members of the Göttingen campus institutions:
    • If you have already used GRO.publications, use the email and password you chose at the registration.
    • If you are using GRO.publications for the first time, click the below link to register.
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • Research Outputs
  • People
  • Organizations
  • Journals
  • Events
  • Projects
 
  • Details
Options

Ancient microbial activity recorded in fracture fillings from granitic rocks (Aspo Hard Rock Laboratory, Sweden)

ISSN
1472-4677
Date Issued
2012
Author(s)
Heim, Christine N. 
Lausmaa, Jukka
Sjovall, Peter
Toporski, Jan
Dieing, T.
Simon, Klaus 
Hansen, Bent Tauber 
Kronz, Andreas 
Arp, Gernot 
Reitner, Joachim 
Thiel, Volker 
DOI
10.1111/j.1472-4669.2012.00328.x
Abstract
Fracture minerals within the 1.8-Ga-old Aspo Diorite (Sweden) were investigated for fossil traces of subterranean microbial activity. To track the potential organic and inorganic biosignatures, an approach combining complementary analytical techniques of high lateral resolution was applied to drill core material obtained at -450 m depth in the Aspo Hard Rock Laboratory. This approach included polarization microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), confocal Raman microscopy, electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The fracture mineral succession, consisting of fluorite and low-temperature calcite, showed a thin (20100 mu m), dark amorphous layer lining the boundary between the two phases. Microscopic investigations of the amorphous layer revealed corrosion marks and, in places, branched tubular structures within the fluorite. Geochemical analysis showed significant accumulations of Si, Al, Mg, Fe and the light rare earth elements (REE) in the amorphous layer. In the same area, ToF-SIMS imaging revealed abundant, partly functionalized organic moieties, for example, CxHy+, CxHyN+, CxHyO+. The presence of such functionalized organic compounds was corroborated by Raman imaging showing bands characteristic of C-C, C-N and C-O bonds. According to its organic nature and the abundance of relatively unstable N- and O- heterocompounds, the organic-rich amorphous layer is interpreted to represent the remains of a microbial biofilm that established much later than the initial cooling of the Precambrian host rock. Indeed, d13C, d18O and 87Sr/86Sr isotope data of the fracture minerals and the host rock point to an association with a fracture reactivation event in the most recent geological past.
google-scholar
Views
Downloads

About

About us
FAQ
ORCID
Site Policy
Privacy Policy
Cookie Consent
Imprint

Contact

Team GRO.publications
support-gro.publications@uni-goettingen.de
Rocket.Chat: #support_gro_publications
Feedback

Göttingen Research Online

Göttingen Research Online bundles various services for Göttingen researchers:

GRO.data (research data repository)
GRO.plan (data management planning)
GRO.publications (publication data repository)
Logo Uni Göttingen
Logo Campus Göttingen
Logo SUB Göttingen
Logo eResearch Alliance

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license.