Options
Bifurcations, chaos, and sensitivity to parameter variations in the Sato cardiac cell model
ISSN
1878-7274
1007-5704
Date Issued
2016
Author(s)
DOI
10.1016/j.cnsns.2016.01.014
Abstract
The dynamics of a detailed ionic cardiac cell model proposed by Sato et al. (2009) is investigated in terms of periodic and chaotic action potentials, bifurcation scenarios, and coexistence of attractors. Starting from the model's standard parameter values bifurcation diagrams are computed to evaluate the model's robustness with respect to (small) parameter changes. While for some parameters the dynamics turns out to be practically independent from their values, even minor changes of other parameters have a very strong impact and cause qualitative changes due to bifurcations or transitions to coexisting attractors. Implications of this lack of robustness are discussed. (C) 2016 The Authors. Published by Elsevier B.V.
File(s)
No Thumbnail Available
Name
1-s2.0-S1007570416300016-main.pdf
Size
2.38 MB
Checksum (MD5)
c7b2bd71039f2034ada783c00c0edb39