Options
Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons
Date Issued
2017
Author(s)
Ripamonti, Silvia
Ambrozkiewicz, Mateusz C.
Guzzi, Francesca
Gravati, Marta
Biella, Gerardo
Bormuth, Ingo
Hammer, Matthieu
Sigler, Albrecht
Kawabe, Hiroshi
Nishimori, Katsuhiko
Toselli, Mauro
Parenti, Marco
DOI
10.7554/eLife.22466
Abstract
Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances.