Options
Quantum correlations and entanglement in far-from-equilibrium spin systems
ISSN
1094-1622
1050-2947
Date Issued
2014
Author(s)
Hazzard, Kaden R. A.
van den Worm, Mauritz
Foss-Feig, Michael
Dalla Torre, Emanuele G.
Pfau, Tilman
Kastner, Michael
Rey, Ana Maria
DOI
10.1103/PhysRevA.90.063622
Abstract
By applying complementary analytic and numerical methods, we investigate the dynamics of spin-1/2 XXZ models with variable-range interactions in arbitrary dimensions. The dynamics we consider is initiated from uncorrelated states that are easily prepared in experiments; it can be equivalently viewed as either Ramsey spectroscopy or a quantum quench. Our primary focus is the dynamical emergence of correlations and entanglement in these far-from-equilibrium interacting quantum systems: We characterize these correlations by the entanglement entropy, concurrence, and squeezing, which are inequivalent measures of entanglement corresponding to different quantum resources. In one spatial dimension, we show that the time evolution of correlation functions manifests a nonperturbative dynamic singularity. This singularity is characterized by a universal power-law exponent that is insensitive to small perturbations. Explicit realizations of these models in current experiments using polar molecules, trapped ions, Rydberg atoms, magnetic atoms, and alkaline-earth and alkali-metal atoms in optical lattices, along with the relative merits and limitations of these different systems, are discussed.