Options
Functional characterization of the adrenoleukodystrophy protein (ALDP) and disease pathogenesis
Journal
Endocrine Research
ISSN
0743-5800
Date Issued
2002
Author(s)
DOI
10.1081/ERC-120016999
Abstract
X-linked adrenoleukodystrophy (X-AILD) is the most common peroxisomal disorder characterized by abnormal accumulation of saturated very long chain fatty acids in tissues and body fluids with predominance in brain white matter and adrenal cortex. The clinical phenotype is highly variable ranging from the severe childhood cerebral form to asymptomatic persons. The responsible ALD gene encodes the adrenoleukodystrophy protein (ALDP), a peroxisomal integral membrane protein that is a member of the ATP-binding cassette (ABC) transporter protein family. The patient gene mutations. are heterogeneously distributed over the functional domains of ALDP. The extreme variability in clinical phenotype, even within one affected family, indicates that besides the ALD gene mutations other factors strongly influence the clinical phenotype. To understand the cell biology and function of mammalian peroxisomal ABC transporters and to determine their role in the pathogenesis of X-ALD we developed a system for expressing functional ABC protein domains in fusion with the maltose binding protein. Wild type and mutant fusion proteins of the nucleotide-binding fold were overexpressed, purified, and characterized by photoaffinity labeling with 8-azido ATP or 8-azido GTP and a coupled ATP regenerating enzyme assay for ATPase activity. Our studies provide evidence that peroxisomal ABC transporters utilize ATP to become a functional transporter and that ALD gene mutations alter peroxisomal transport function. The established disease model will be used further to study the influence of possible disease modifier proteins on ALDP function.