Options
Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables
ISSN
0936-577X
Date Issued
2015
Author(s)
Zhao, H.-G.
Hoffmann, Holger
van Bussel, Lenny G. J.
Enders, Andreas
Specka, Xenia
Sosa, C.
Yeluripati, J.
Tao, Fulu
Constantin, Julie
Raynal, Helene
Teixeira, Edmar
Grosz, B.
Doro, Luca
Zhao, Zhigan
Nendel, Claas
Kiese, Ralf
Eckersten, Henrik
Haas, Edwin
Vanuytrecht, E.
Wang, Enli
Kuhnert, Matthias
Trombi, Giacomo
Moriondo, Marco
Bindi, Marco
Lewan, Elisabet
Bach, M.
Roggero, Pier Paolo
Wallach, Daniel
Cammarano, Davide
Asseng, Senthold
Krauss, G.
Gaiser, Thomas
Ewert, Frank
DOI
10.3354/cr01301
Abstract
We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 process-based crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and silage maize) under 3 production conditions for the state of North Rhine-Westphalia, Germany. The DAE was evaluated for 5 weather data resolutions (i.e. 1, 10, 25, 50, and 100 km) for 3 response variables including yield, growing season evapotranspiration, and water use efficiency. Five metrics, viz. the spatial bias (Δ), average absolute deviation (AAD), relative AAD, root mean squared error (RMSE), and relative RMSE, were used to evaluate the DAE on both the input weather data and simulated results. For weather data, we found that data aggregation narrowed the spatial variability but widened the Δ, especially across mountainous areas. The DAE on loss of spatial heterogeneity and hotspots was stronger than on the average changes over the region. The DAE increased when coarsening the spatial resolution of the input weather data. The DAE varied considerably across different models, but changed only slightly for different production conditions and crops. We conclude that if spatially detailed information is essential for local management decision, higher resolution is desirable to adequately capture the spatial variability for heterogeneous regions. The required resolution depends on the choice of the model as well as the environmental condition of the study area.