Options
Cilia-based flow network in the brain ventricles
ISSN
0036-8075
Date Issued
2016
Author(s)
DOI
10.1126/science.aae0450
Abstract
Going with the flow The interstitial spaces of the brain are filled with cerebrospinal fluid (CSF). Faubel et al. studied fluid transport in the third ventricle of the brain of mice, rats, and pigs. Sophisticated, state-of-the-art fluid dynamic studies revealed a complex pattern of cilia beating that leads to an intricate network of “highways” of CSF flow. This flow rapidly and efficiently transports and partitions CSF. Science , this issue p. 176
A cilia-based transport network that suggests how cerebrospinal fluid constituents are actively distributed is revealed in the brain.
Cerebrospinal fluid conveys many physiologically important signaling factors through the ventricular cavities of the brain. We investigated the transport of cerebrospinal fluid in the third ventricle of the mouse brain and discovered a highly organized pattern of cilia modules, which collectively give rise to a network of fluid flows that allows for precise transport within this ventricle. We also discovered a cilia-based switch that reliably and periodically alters the flow pattern so as to create a dynamic subdivision that may control substance distribution in the third ventricle. Complex flow patterns were also present in the third ventricles of rats and pigs. Our work suggests that ciliated epithelia can generate and maintain complex, spatiotemporally regulated flow networks.