Options
Nutrient fluxes via leaching from coarse woody debris in a Fagus sylvatica forest in the Solling Mountains, Germany
ISSN
1208-6037
0045-5067
Date Issued
2008
Author(s)
DOI
10.1139/X08-088
Abstract
To evaluate the importance of nutrient fluxes via leaching from coarse woody debris (CWD) in an area with high atmospheric nitrogen (N) inputs, throughfall and CWD leachate from logs at different stages of decomposition were investigated over a period of 14 and 27 months, respectively, in a 160-year-old European beech (Fagus sylvatica L.) forest in northwestern Germany. Water samples, collected from 30 zero-tension lysimeters installed in pairs along 15 logs and from 27 neighboring raingauges, were chemically analyzed in the laboratory. Generally, as CWD decay advanced, the ratio of leachate to throughfall decreased, and the amount of dissolved nutrients in the leachate increased. With the exception of ammonium (NH4+) and dissolved inorganic carbon, the element concentrations in the CWD leachate were significantly higher than those in the throughfall. The concentrations of NH4+ and nitrate (NO3-) in the CWD leachate, which were very high compared with values from North American studies, were caused by the continuously high atmospheric N inputs, and the resulting N saturation in the forest ecosystem investigated. The low concentrations of the cations calcium and magnesium indicate that at this site nutrients limiting plant and fungal growth are retained and accumulated in the CWD.