Options
Tree Species Selection in the Face of Drought Risk—Uncertainty in Forest Planning
ISSN
1999-4907
Date Issued
2017
Author(s)
DOI
10.3390/f8100363
Abstract
Rapid climate change leads to significant shifts in the site-productivity relationship of tree species and alters abiotic and biotic risks well beyond classical rotation ages on many forest sites worldwide. Forest conversion may be an adequate measure to counter possible negative effects of climate change. Unfortunately, climate-driven changes in abiotic and biotic risks bear a significant source of intrinsic uncertainty inherent in climate projections. It is our goal to appraise uncertainty in species selection under drought stress, one of the most important risk factors for many forests. We derive a method to assess drought restrictions and demonstrate the uncertainty in the process of species selection by applying three climate scenarios. Furthermore, we interpret the consequences of climate uncertainty in the light of different management goals, i.e., a business-as-usual silviculture, a climate protection strategy favoring CO2 sequestration and a biodiversity strategy increasing diversity. The methods are applied to two representative regions in the North German Plain. The results clearly show the strong need for adaptive planning when drought restrictions are considered. However, different silvicultural management objectives may alter the extent of adaptive planning. The uncertainty in the planning process arising from different underlying climate projections strongly depends on the regional site characteristics and on forest management strategy. In conclusion, it is most important in forest planning to clearly state the management goals and to carefully explore if the goals can be met under climate change and if the uncertainty due to climate projections significantly affects the results of species selection.
File(s)
No Thumbnail Available
Name
forests-08-00363.pdf
Size
3.14 MB
Checksum (MD5)
e184c11c4f2f04f17b571ed477ff3815