Options
Temperature evolution in IR action spectroscopy experiments with sodium doped water clusters
ISSN
1463-9076
Date Issued
2021
Author(s)
Becker, Daniel
Dierking, Christoph W.
Suchan, Jiří
Zurheide, Florian
Lengyel, Jozef
Fárník, Michal
Slavíček, Petr
Buck, Udo
DOI
10.1039/D0CP05390B
Abstract
The combination of supersonic expansions with IR action spectroscopy techniques is the basis of many successful approaches to study cluster structure and dynamics. In this paper we elucidate the temperature effect of IR excitation and evaporative cooling on sodium solvation in water clusters.
The combination of supersonic expansions with IR action spectroscopy techniques is the basis of many successful approaches to study cluster structure and dynamics. The effects of temperature and temperature evolution are important with regard to both the cluster synthesis and the cluster dynamics upon IR excitation. In the past the combination of the sodium doping technique with IR excitation enhanced near threshold photoionization has been successfully applied to study neutral, especially water clusters. In this work we follow an overall examination approach for inspecting the interplay of cluster temperature and cluster structure in the initial cooling process and in the IR excitation induced heating of the clusters. In molecular simulations, we study the temperature dependent photoionization spectra of the sodium doped clusters and the evaporative cooling process by water molecule ejection at the cluster surface. We present a comprehensive analysis that provides constraints for the temperature evolution from the nozzle to cluster detection in the mass spectrometer. We attribute the IR action effect to the strong temperature dependence of sodium solvation in the IR excited clusters and we discuss the effects of geometry changes during the IR multi-photon absorption process with regard to application prospects of the method.