Options
The brain erythropoietin system and its potential for therapeutic exploitation in brain disease
ISSN
0898-4921
Date Issued
2006
Abstract
The discovery of the broad neuroprotective potential of erythropoietin (EPO), an endogenous hematopoietic growth factor, has opened new therapeutic avenues in the treatment of brain diseases. EPO expression in the brain is induced by hypoxia. Practically all brain cells are capable of production and release of EPO and expression of its receptor. EPO exerts Multifaceted protective effects on brain cells. It protects neuronal cells from noxious stimuli Such as hypoxia, excess glutamate, serum deprivation or kainic acid exposure in vitro by targeting a variety of mechanisms and involves neuronal, glial and endothelial cell functions. In rodent models of ischemic stroke, EPO reduces infarct volume and improves functional outcome, but beneficial effects have also been observed in animal models of subarachnoid hemorrhage, intracerebral hemorrhage, traumatic brain injury, and spinal cord injury. EPO has a convenient therapeutic window upon ischemic stroke and favorable pharmacokinetics. Results from first therapeutic trials in humans are promising, but will need to be validated in larger trials. The safety profile and effectiveness of EPO in a wide variety of neurologic disease models make EPO a candidate compound for a potential first-line therapeutic for neurologic emergencies.