Options
Image content is more important than Bouma’s Law for scene metamers
Date Issued
2018
Author(s)
Wallis, Thomas S. A.
Funke, Christina M.
Gatys, Leon A.
Wichmann, Felix A.
Bethge, Matthias
DOI
10.1101/378521
Abstract
We subjectively perceive our visual field with high fidelity, yet large peripheral distortions can go unnoticed and peripheral objects can be difficult to identify (crowding). A recent paper proposed a model of the mid-level ventral visual stream in which neural responses were averaged over an area of space that increased as a function of eccentricity (scaling). Human participants could not discriminate synthesised model images from each other (they were metamers) when scaling was about half the retinal eccentricity. This result implicated ventral visual area V2 and approximated “Bouma’s Law” of crowding. It has subsequently been interpreted as a link between crowding zones, receptive field scaling, and our rich perceptual experience. However, participants in this experiment never saw the original images. We find that participants can easily discriminate real and model-generated images at V2 scaling. Lower scale factors than even V1 receptive fields may be required to generate metamers. Efficiently explaining why scenes look as they do may require incorporating segmentation processes and global organisational constraints in addition to local pooling.