Options
Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases
ISSN
0261-4189
Date Issued
1999
Author(s)
Abstract
Sulfatases carry at their catalytic site a unique posttranslational modification, an a-formylglycine residue that is essential for enzyme activity. Formylglycine is generated by oxidation of a conserved cysteine or, in some prokaryotic sulfatases, serine residue. In eukaryotes, this oxidation occurs in the endoplasmic reticulum during or shortly after import of the nascent sulfatase polypeptide. The modification of arylsulfatase A was studied in vitro and was found to be directed by a short linear sequence, CTPSR, starting with the cysteine to be modified. Mutational analyses showed that the cysteine, proline and arginine are the key residues within this motif, whereas formylglycine formation tolerated the individual, but not the simultaneous substitution of the threonine or serine. The CTPp. motif was transferred to a heterologous protein leading to low-efficient formylglycine formation. The efficiency reached control values when seven additional residues (AALLTGR) directly following the CTPSR motif in arylsulfatase A were present. Mutating up to four residues simultaneously within this heptamer sequence inhibited the modification only moderately. AALLTGR may, therefore, have an auxiliary function in presenting the core motif to the modifying enzyme. Within the two motifs, the key residues are fully, and other residues are highly conserved among all known members of the sulfatase family.
Subjects
File(s)
No Thumbnail Available
Name
328. Sequence determinants directing conversion ....pdf
Size
405.24 KB
Checksum (MD5)
928b38e8ccfbed89457221207bdb1701