Options
Hot metamorphic core complex in a cold foreland
ISSN
1437-3262
1437-3254
Date Issued
2011
Author(s)
DOI
10.1007/s00531-010-0512-7
Abstract
The Montagne Noire forms the southernmost part of the French Massif Central. Carboniferous flysch sediments and very low-grade metamorphic imprint testify to a very external position in the orogen. Sedimentation of synorogenic clastic sediments continued up to the Vis,an/Namurian boundary (a parts per thousand currency sign320 Ma). Subsequently, the Palaeozoic sedimentary pile underwent recumbent folding and grossly southward thrusting. An extensional window exposes a hot core of Carboniferous HT/LP gneisses, migmatites and granites (Zone Axiale), which was uplifted from under the nappe pile. After the emplacement of the nappes on the Zone Axiale (Variscan D-1), all structural levels shared the same tectonic evolution: D-2 (extension and exhumation), D-3 (refolding) and post-D-3 dextral transtension. HT/LP-metamorphism in the crystalline rocks probably started before and continued after the emplacement of the nappes. Peak metamorphic temperatures were attained during a post-nappe thermal increment (M-2). M-2 occurred during ENE-directed bilateral extension, which exhumed the Zone Axiale and its frame as a ductile horst structure, flanked to the ENE by a Stephanian intra-montane basin. Map patterns and mesoscopic structures reveal that extension in ENE occurred simultaneously with NNW-oriented shortening. Combination of these D-2 effects defines a bulk prolate strain in a "pinched pull-apart" setting. Ductile D-2 deformation during M-2 dominates the structural record. In wide parts of the nappes on the southern flank of the Zone Axiale, D-1 is only represented by the inverted position of bedding (overturned limbs of recumbent D-1 folds) and by refolded D-1 folds. U-Pb monazite and zircon ages and K-Ar muscovite ages are in accord with Ar-Ar data from the literature. HT/LP metamorphism and granitoid intrusion commenced already at a parts per thousand yen330 Ma and continued until 297 Ma, and probably in a separate pulse in post-Stephanian time. Metamorphic ages older than c. 300 Ma are not compatible with the classical model of thermal relaxation after stacking, since they either pre-date or too closely post-date the end of flysch sedimentation. We therefore propose that migmatization and granite melt generation were independent from crustal thickening and caused, instead, by the repeated intrusion of melts into a crustal-scale strike-slip shear zone. Advective heating continued in a pull-apart setting whose activity outlasted the emplacement of the Variscan nappe pile. The shear-zone model is confirmed by similar orogen-parallel extensional windows with HT/LP metamorphism and granitoid intrusion in neighbouring areas, whose location is independent from their position in the orogen. We propose that heat transfer from the mantle occurred in dextral strike-slip shear zones controlled by the westward propagating rift of the Palaeotethys ocean, which helped to destroy the Variscan orogen.