Options
Temperature- and doping-dependent optical absorption in the small-polaron system Pr1-xCaxMnO3
ISSN
1550-235X
1098-0121
Date Issued
2015
DOI
10.1103/PhysRevB.92.035145
Abstract
Small polaron optical properties are studied comprehensively in thin film samples of the narrow bandwidth manganite Pr1-xCaxMnO3 by optical absorption spectroscopy as a function of doping and temperature. A broad near infrared double-peak absorption band in the optical conductivity spectras is observed and interpreted in the framework of photon-assisted small polaron intersite hopping and on-site Jahn-Teller excitation. Application of quasiclassical small polaron theory to both transitions allows an approximate determination of polaron specific parameters like the polaron binding energy, the characteristic phonon energy, as well as the Jahn-Teller splitting energy as a function of temperature and doping. Based on electronic structure calculations, we consider the impact of the hybridization of O 2p and Mn 3d electronic states on the Jahn-Teller splitting and the polaron properties. The interplay between hopping and Jahn-Teller excitations is discussed in the alternative pictures of mixed valence Mn3+/Mn4+ sites (Jahn-Teller polaron) and equivalent Mn(3+x)+ sites (Zener polaron). We give a careful evaluation of the estimated polaron parameters and discuss the limitations of small polaron quasiclassical theory for application to narrow bandwidth manganites.