Options
No evidence for increased cell entry or antibody evasion by Delta sublineage AY.4.2
ISSN
1672-7681
Date Issued
2022
Author(s)
Arora, Prerna
Kempf, Amy
Nehlmeier, Inga
Graichen, Luise
Winkler, Martin S.
Lier, Martin
Schulz, Sebastian
Jäck, Hans-Martin
Hoffmann, Markus
DOI
10.1038/s41423-021-00811-8
Abstract
Since the beginning of the COVID-19 pandemic, multiple SARS-CoV-2 variants have emerged. While some variants spread only locally, others, referred to as variants of concern, disseminated globally and became drivers of the pandemic. All SARS-CoV-2 variants harbor mutations relative to the virus circulating early in the pandemic, and mutations in the viral spike (S) protein are considered of particular relevance since the S protein mediates host cell entry and constitutes the key target of the neutralizing antibody response. As a consequence, mutations in the S protein may increase SARS-CoV-2 infectivity and enable its evasion of neutralizing antibodies. Furthermore, mutations in the S protein can modulate viral transmissibility and pathogenicity.
Since the beginning of the COVID-19 pandemic, multiple SARS-CoV-2 variants have emerged. While some variants spread only locally, others, referred to as variants of concern, disseminated globally and became drivers of the pandemic. All SARS-CoV-2 variants harbor mutations relative to the virus circulating early in the pandemic, and mutations in the viral spike (S) protein are considered of particular relevance since the S protein mediates host cell entry and constitutes the key target of the neutralizing antibody response. As a consequence, mutations in the S protein may increase SARS-CoV-2 infectivity and enable its evasion of neutralizing antibodies. Furthermore, mutations in the S protein can modulate viral transmissibility and pathogenicity.