Options
Viscoelastic properties of vimentin originate from nonequilibrium conformational changes
ISSN
2375-2548
Date Issued
2018
Author(s)
Candelli, Andrea
Danes, Jordi Cabanas
Peterman, Erwin J. G.
Wuite, Gijs J. L.
DOI
10.1126/sciadv.aat1161
Abstract
Structure and dynamics of living matter rely on design principles fundamentally different from concepts of traditional material science. Specialized intracellular filaments in the cytoskeleton permit living systems to divide, migrate, and growwith a high degree of variability and durability. Among the three filament systems,microfilaments,microtubules, and intermediate filaments (IFs), the physical properties of IFs and their role in cellular mechanics are the least well understood. We use optical trapping of individual vimentin filaments to investigate energy dissipation, strain history dependence, and creep behavior of stretched filaments. By stochastic and numerical modeling, we link our experimental observations to the peculiar molecular architecture of IFs. We find that individual vimentin filaments display tensile memory and are able to dissipate more than 70% of the input energy.We attribute these phenomena to distinct nonequilibrium folding and unfolding of a helices in the vimentin monomers constituting the filaments.
File(s)
No Thumbnail Available
Name
eaat1161.full.pdf
Size
9.96 MB
Checksum (MD5)
4afd2c7c40ec8ace181b9f90fff8ae17