Options
Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change
ISSN
2197-5620
Date Issued
2015
Author(s)
DOI
10.1186/s40663-015-0036-5
Abstract
Background
Forest management faces a climate induced shift in growth potential and increasing current and emerging new risks. Vulnerability analysis provides decision support based on projections of natural resources taking risks and uncertainties into account. In this paper we (1) characterize differences in forest dynamics under three management scenarios, (2) analyse the effects of the three scenarios on two risk factors, windthrow and drought stress, and (3) quantify the effects and the amount of uncertainty arising from climate projections on height increment and drought stress.
Methods
In four regions in northern Germany, we apply three contrasting management scenarios and project forest development under climate change until 2070. Three climate runs (minimum, median, maximum) based on the emission scenario RCP 8.5 control the site-sensitive forest growth functions. The minimum and maximum climate run define the range of prospective climate development.
Results
The projections of different management regimes until 2070 show the diverging medium-term effects of thinnings and harvests and long-term effects of species conversion on a regional scale. Examples of windthrow vulnerability and drought stress reveal how adaptation measures depend on the applied management path and the decision-maker’s risk attitude. Uncertainty analysis shows the increasing variability of drought risk projections with time. The effect of climate projections on height growth are quantified and uncertainty analysis reveals that height growth of young trees is dominated by the age-trend whereas the climate signal in height increment of older trees is decisive.
Conclusions
Drought risk is a serious issue in the eastern regions independent of the applied silvicultural scenario, but adaptation measures are limited as the proportion of the most drought tolerant species Scots pine is already high. Windthrow risk is no serious overall threat in any region, but adequate counter-measures such as species conversion, species mixture or reduction of target diameter can be taken. This simulation study of three silvicultural scenarios and three climate runs spans a decision space of potential forest development to be used for decision making. Which adaptation measures to counteract climate induced risks and uncertainty are to be taken is, however, a matter of individual risk attitude.
Forest management faces a climate induced shift in growth potential and increasing current and emerging new risks. Vulnerability analysis provides decision support based on projections of natural resources taking risks and uncertainties into account. In this paper we (1) characterize differences in forest dynamics under three management scenarios, (2) analyse the effects of the three scenarios on two risk factors, windthrow and drought stress, and (3) quantify the effects and the amount of uncertainty arising from climate projections on height increment and drought stress.
Methods
In four regions in northern Germany, we apply three contrasting management scenarios and project forest development under climate change until 2070. Three climate runs (minimum, median, maximum) based on the emission scenario RCP 8.5 control the site-sensitive forest growth functions. The minimum and maximum climate run define the range of prospective climate development.
Results
The projections of different management regimes until 2070 show the diverging medium-term effects of thinnings and harvests and long-term effects of species conversion on a regional scale. Examples of windthrow vulnerability and drought stress reveal how adaptation measures depend on the applied management path and the decision-maker’s risk attitude. Uncertainty analysis shows the increasing variability of drought risk projections with time. The effect of climate projections on height growth are quantified and uncertainty analysis reveals that height growth of young trees is dominated by the age-trend whereas the climate signal in height increment of older trees is decisive.
Conclusions
Drought risk is a serious issue in the eastern regions independent of the applied silvicultural scenario, but adaptation measures are limited as the proportion of the most drought tolerant species Scots pine is already high. Windthrow risk is no serious overall threat in any region, but adequate counter-measures such as species conversion, species mixture or reduction of target diameter can be taken. This simulation study of three silvicultural scenarios and three climate runs spans a decision space of potential forest development to be used for decision making. Which adaptation measures to counteract climate induced risks and uncertainty are to be taken is, however, a matter of individual risk attitude.