Options
Ultrafast dynamical study of pyrene-N,N-dimethylaniline (PyDMA) as an organic molecular diode in solid state
ISSN
1520-6106
Date Issued
2014-03-27
Author(s)
DOI
10.1021/jp4121222
Abstract
Femtosecond optical pump-probe spectroscopy has been employed for studying the directly linked electron donor-acceptor system pyrene-N,N-dimethylaniline (PyDMA) in solid state. This DMA-pyrene derivative discussed is being applied as a molecular diode system switching on an ultrafast time scale. Our ultrafast solid-state studies reveal a complex photochemistry of this molecular crystal system. Strong couplings of the optically induced charge-transfer state with the radical ion pair state allow a femtosecond transition of the latter. One could see on the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) description that a pure optical transition switches the system from a conducting to a blocked system because the molecular orbitals (MOs) of DMA moiety lie in a node plane of the LUMO. Within 800 fs the system relaxes back to the ground state and/or forms a radical ion pair, which is the surprising result of our study; when the system was probed further, the system underwent vibrational cooling and enhanced population inversion of the radical ion pair.