Options
Body mass constraints on feeding rates determine the consequences of predator loss
ISSN
1461-0248
1461-023X
Date Issued
2012
Author(s)
DOI
10.1111/j.1461-0248.2012.01750.x
Abstract
Understanding effects of species loss in complex food webs with multiple trophic levels is complicated by the idiosyncrasy of the predator effects on lower trophic levels: direct and indirect effects intermingle and may increase, decrease or not affect ecosystem functioning. We introduce a reductionist approach explaining a predators trophic effect only by empirically well-founded body-mass constraints on abundance, diet breadth and feeding strength. We demonstrate that this mechanistic concept successfully explains the positive, negative and neutral net effects of predators on decomposers in a litter microcosm experiment. This approach offers a new perspective on the interplay of complex interactions within food webs and is easily extendable to include phylogenetic and other body-mass independent traits. We anticipate that allometry will substantially improve our understanding of idiosyncratic predator effects in experiments and the consequences of predator loss in natural ecosystems.