Options
Proteolipid Protein Modulates Preservation of Peripheral Axons and Premature Death when Myelin Protein Zero is Lacking
ISSN
1098-1136
0894-1491
Date Issued
2016
Author(s)
Eichel, Maria A.
Lueders, Katja A.
Martini, Rudolf
DOI
10.1002/glia.22922
Abstract
Protein zero (P0) is the major structural component of peripheral myelin. Lack of this adhesion protein from Schwann cells causes a severe dysmyelinating neuropathy with secondary axonal degeneration in humans with the neuropathy Dejerine-Sottas syndrome (DSS) and in the corresponding mouse model (P0(null)-mice). In the mammalian CNS, the tetraspan-membrane protein PLP is the major structural myelin constituent and required for the long-term preservation of myelinated axons, which fails in hereditary spastic paraplegia (SPG type-2) and the relevant mouse model (Plp(null)-mice). The Plp-gene is also expressed in Schwann cells but PLP is of very low abundance in normal peripheral myelin; its function has thus remained enigmatic. Here we show that the abundance of PLP but not of other tetraspan myelin proteins is strongly increased in compact peripheral myelin of P0(null)-mice. To determine the functional relevance of PLP expression in the absence of P0, we generated P0(null star) Plp(null)-double-mutant mice. Compared with either single-mutant, P0(null star) Plp(null)-mice display impaired nerve conduction, reduced motor functions, and premature death. At the morphological level, axonal segments were frequently non-myelinated but in a one-to-one relationship with a hypertrophic Schwann cell. Importantly, axonal numbers were reduced in the vital phrenic nerve of P0(null star) Plp(null)-mice. In the absence of P0, thus, PLP also contributes to myelination by Schwann cells and to the preservation of peripheral axons. These data provide a link between the Schwann cell-dependent support of peripheral axons and the oligodendrocyte-dependent support of central axons.