Options
Retrieval of remotely sensed LAI using Landsat ETM plus data and ground measurements of solar radiation and vegetation structure: Implication of leaf inclination angle
ISSN
0303-2434
Date Issued
2013
Author(s)
DOI
10.1016/j.jag.2013.02.006
Abstract
A time series of leaf area index (LAI) of a managed birch forest in Germany (near Dresden) has been developed based on 16-day normalized difference vegetation index (NDVI) data from the Landsat ETM+ sensor at 30 m resolution. The Landsat ETM+ LAI was retrieved using a modified physical radiative transfer (RTM) model which establishes a relationship between LAI, fractional vegetation cover (fC), and given patterns of surface reflectance, view-illumination conditions and optical properties of vegetation. In situ measurements of photosynthetically active radiation (PAR) and vegetation structure parameters using hemispherical photography (HSP) served for calibration of model parameters, while data from litter collection at the study site provided the ground-based estimates of LAI for validation of modelling results. Influence of view-illumination conditions on optical properties of canopy was simulated by a view angle geometry model incorporating the solar zenith angle and the sensor viewing angle. Effects of intra-annual and inter-annual variability of structural properties of the canopy on the light extinction coefficient were simulated by implementing variability of the leaf inclination angle (LIA), which was confirmed in the study site. The results revealed good compatibility of the produced Landsat ETM+ LAI data set with the litter-estimated LAI. The results also showed high sensitivity of the LAI retrieval algorithm to variability of structural properties of the canopy: the implementation of LIA dynamics into the LAI retrieval algorithm significantly improved the model accuracy. (C) 2013 Elsevier B.V. All rights reserved.