Options
Anti-apoptotic gene therapy in Parkinson's disease
Journal
Parkinson's disease and related disorders
ISSN
0303-6995
Date Issued
2006
Author(s)
Editor(s)
Riederer, P.
Abstract
Apoptosis, whether caspase-dependent or caspase-independent, has been implicated as one of the important mechanisms leading to the death of dopaminergic neurons in the substantia nigra of Parkinson's disease patients. Major advances of our understanding of apoptosis have been achieved in studies of 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) toxicity in mice and monkeys and 6-hydroxydopamine (6-OHDA) toxicity in rats and monkeys. The use of viral vectors to either express anti-apoptotic proteins or to downregulate pro-apoptotic proteins has the major advantage of addressing selective molecular targets, bypassing the blood-brain-barrier to specifically target the nigrostriatal pathway by their stereotaxic application and by the choice of the appropriate virus and promotor. Used thus far have been virus-mediated overexpression of inhibitor of apoptosis proteins, inhibitors of the c-jun-N-terminal kinase (JNK) pathway, inhibitors of calpains and dominant negative inhibitors of the protease activating factor (APAF)-1 and cdk5. Most studies implicate the endogenous, mitochondrial pathway in the apoptosis of dopaminergic neurons. The results suggest that only an inhibition of this pathway upstream of caspase activation will also result in the protection of nigrostriatal dopaminergic terminals and behavioral benefit, whereas an inhibition of caspases alone may not be sufficient to prevent the degeneration of terminals, although it may promote the survival of neuronal cell bodies for some time.