Options
Roos, Burkhard
Loading...
Preferred name
Roos, Burkhard
Official Name
Roos, Burkhard
Alternative Name
Roos, B.
Now showing 1 - 3 of 3
2014Journal Article Research Paper [["dc.bibliographiccitation.firstpage","638"],["dc.bibliographiccitation.journal","Applied Surface Science"],["dc.bibliographiccitation.lastpage","644"],["dc.bibliographiccitation.volume","307"],["dc.contributor.author","Eberl, Christian"],["dc.contributor.author","Döring, Florian"],["dc.contributor.author","Liese, Tobias"],["dc.contributor.author","Schlenkrich, Felix"],["dc.contributor.author","Roos, Burkhard"],["dc.contributor.author","Hahn, Matthias"],["dc.contributor.author","Hoinkes, Thomas"],["dc.contributor.author","Rauschenbeutel, Arno"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Krebs, Hans-Ulrich"],["dc.date.accessioned","2017-09-07T11:45:42Z"],["dc.date.available","2017-09-07T11:45:42Z"],["dc.date.issued","2014"],["dc.description.abstract","Recently, we demonstrated unprecedented sub-5 nm point focusing of hard X-rays (at 7.9 key) based on the combination of a high gain Kirkpatrick-Baez (KB) mirror system and a high resolution W/Si multilayer zone plate (MZP). This MZP was prepared by the combination of pulsed laser deposition (PLD) and focused ion beam (FIB). Despite the small focus size, the MZP's quality suffered from sufficient but comparatively low efficiency (2%). In this paper we discuss how to overcome limitations of MZP fabrication by PLD by investigating the material systems W/Si, WIZr02, and Ta205/Zr02. We give a detailed description on the optimization processes for the deposition of smooth multilayers with highly precise layer thicknesses on a rotating wire. Furthermore, we present our latest results regarding a Ta205/Zr02 MZP, which has been proven already to be a system of high potential in the very first experiments as the efficiency reached 6.9% (at 18 keV). 2014 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.apsusc.2014.04.089"],["dc.identifier.gro","3142089"],["dc.identifier.isi","000336596700088"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4422"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Deutsche Forschungsgemeinschaft [SFB 755, SFB 1073]"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 755: Nanoscale Photonic Imaging"],["dc.relation","SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen"],["dc.relation","SFB 1073 | Topical Area A | A02 Verständnis und Manipulation von Dissipationskanälen des Energietransports"],["dc.relation.eissn","1873-5584"],["dc.relation.issn","0169-4332"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.title","Fabrication of laser deposited high-quality multilayer zone plates for hard X-ray nanofocusing"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI WOS2014Journal Article Research Paper [["dc.bibliographiccitation.artnumber","201908"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Applied Physics Letters"],["dc.bibliographiccitation.volume","105"],["dc.contributor.author","Roos, B."],["dc.contributor.author","Kapelle, B."],["dc.contributor.author","Richter, G."],["dc.contributor.author","Volkert, Cynthia A."],["dc.date.accessioned","2018-11-07T09:32:36Z"],["dc.date.available","2018-11-07T09:32:36Z"],["dc.date.issued","2014"],["dc.description.abstract","We investigate deformation in high quality Au nanowires under both tension and bending using in-situ transmission electron microscopy. Defect evolution is investigated during: (1) tensile deformation of < 110 > oriented, initially defect-free, single crystal nanowires with cross-sectional widths between 30 and 300 nm, (2) bending deformation of the same wires, and (3) tensile deformation of wires containing coherent twin boundaries along their lengths. We observe the formation of twins and stacking faults in the single crystal wires under tension, and storage of full dislocations after bending of single crystal wires and after tension of twinned wires. The stress state dependence of the deformation morphology and the formation of stacking faults and twins are not features of bulk Au, where deformation is controlled by dislocation interactions. Instead, we attribute the deformation morphologies to the surface nucleation of either leading or trailing partial dislocations, depending on the Schmid factors, which move through and exit the wires producing stacking faults or full dislocation slip. The presence of obstacles such as neutral planes or twin boundaries hinder the egress of the freshly nucleated dislocations and allow trailing and leading partial dislocations to combine and to be stored as full dislocations in the wires. We infer that the twins and stacking faults often observed in nanoscale Au specimens are not a direct size effect but the result of a size and obstacle dependent transition from dislocation interaction controlled to dislocation nucleation controlled deformation. (C) 2014 AIP Publishing LLC."],["dc.identifier.doi","10.1063/1.4902313"],["dc.identifier.isi","000345513300023"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31786"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","1077-3118"],["dc.relation.issn","0003-6951"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.title","Surface dislocation nucleation controlled deformation of Au nanowires"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI WOS2012Journal Article Research Paper [["dc.bibliographiccitation.firstpage","762"],["dc.bibliographiccitation.issue","S2"],["dc.bibliographiccitation.journal","Microscopy and Microanalysis"],["dc.bibliographiccitation.lastpage","763"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Volkert, C.A."],["dc.contributor.author","Roos, B."],["dc.contributor.author","Kapelle, B."],["dc.contributor.author","Kelling, A."],["dc.contributor.author","Epler, E."],["dc.contributor.author","Richter, G."],["dc.date.accessioned","2014-06-03T10:52:00Z"],["dc.date.accessioned","2021-10-11T11:36:53Z"],["dc.date.available","2014-06-03T10:52:00Z"],["dc.date.available","2021-10-11T11:36:53Z"],["dc.date.issued","2012"],["dc.description.abstract","n.n."],["dc.identifier.doi","10.1017/S1431927612005661"],["dc.identifier.fs","595438"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10165"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/90814"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation.issn","1435-8115"],["dc.relation.issn","1431-9276"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.subject","Nanostructure; metals; Deformation"],["dc.title","Revealing Deformation Mechanisms In Nanoscale Metals"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI