Options
Callegari, Sylvie
Loading...
Preferred name
Callegari, Sylvie
Official Name
Callegari, Sylvie
Alternative Name
Callegari, S.
Main Affiliation
Now showing 1 - 10 of 10
2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","323"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta"],["dc.bibliographiccitation.lastpage","333"],["dc.bibliographiccitation.volume","1865"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","Ronsör, Christin"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2018-01-09T14:12:01Z"],["dc.date.available","2018-01-09T14:12:01Z"],["dc.date.issued","2018"],["dc.description.abstract","The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation."],["dc.identifier.doi","10.1016/j.bbamcr.2017.11.010"],["dc.identifier.pmid","29154948"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15209"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11600"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/16"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nd/4.0"],["dc.title","The mitochondrial TMEM177 associates with COX20 during COX2 biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","4135"],["dc.bibliographiccitation.issue","23"],["dc.bibliographiccitation.journal","Human Molecular Genetics"],["dc.bibliographiccitation.lastpage","4144"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Emperador, Sonia"],["dc.contributor.author","Thompson, Kyle"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","Topol, Sarah E."],["dc.contributor.author","Spencer, Emily G."],["dc.contributor.author","McFarland, Robert"],["dc.contributor.author","Ruiz-Pesini, Eduardo"],["dc.contributor.author","Torkamani, Ali"],["dc.contributor.author","Taylor, Robert W."],["dc.contributor.author","Montoya, Julio"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2019-07-09T11:50:15Z"],["dc.date.available","2019-07-09T11:50:15Z"],["dc.date.issued","2018"],["dc.description.abstract","Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondrial metabolite carriers and translocase subunits (TIM23, TIM17A/B and TIM22), into the inner mitochondrial membrane. Both types of substrates are essential for mitochondrial metabolic function and biogenesis. Here, we report on a subject, diagnosed at 1.5 years, with a neuromuscular presentation, comprising hypotonia, gastroesophageal reflux disease and persistently elevated serum and Cerebrospinal fluid lactate (CSF). Patient fibroblasts displayed reduced oxidative capacity and altered mitochondrial morphology. Using trans-mitochondrial cybrid cell lines, we excluded a candidate variant in mitochondrial DNA as causative of these effects. Whole-exome sequencing identified compound heterozygous variants in the TIM22 gene (NM_013337), resulting in premature truncation in one allele (p.Tyr25Ter) and a point mutation in a conserved residue (p.Val33Leu), within the intermembrane space region, of the TIM22 protein in the second allele. Although mRNA transcripts of TIM22 were elevated, biochemical analyses revealed lower levels of TIM22 protein and an even greater deficiency of TIM22 complex formation. In agreement with a defect in carrier translocase function, carrier protein amounts in the inner membrane were found to be reduced. This is the first report of pathogenic variants in the TIM22 pore-forming subunit of the carrier translocase affecting the biogenesis of inner mitochondrial membrane proteins critical for metabolite exchange."],["dc.identifier.doi","10.1093/hmg/ddy305"],["dc.identifier.pmid","30452684"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15894"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59733"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/51"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation.issn","1460-2083"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Mutations of the mitochondrial carrier translocase channel subunit TIM22 cause early-onset mitochondrial myopathy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2022Journal Article Research Paper [["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.contributor.author","Chojnacka, Katarzyna Justyna"],["dc.contributor.author","Elancheliyan, Praveenraj"],["dc.contributor.author","Mussulini, Ben Hur Marins"],["dc.contributor.author","Mohanraj, Karthik"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Gosk, Aleksandra"],["dc.contributor.author","Banach, Tomasz"],["dc.contributor.author","Góral, Tomasz"],["dc.contributor.author","Szczepanowska, Karolina"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2022-02-01T10:31:19Z"],["dc.date.available","2022-02-01T10:31:19Z"],["dc.date.issued","2022"],["dc.description.abstract","Assembly of the dimeric complex III (CIII 2 ) in the mitochondrial inner membrane is an intricate process, in which several accessory proteins are involved as assembly factors. Despite numerous studies, this process is yet to be fully understood. Here we report the identification of human OCIAD2 (Ovarian Carcinoma Immunoreactive Antigen domain containing protein 2) protein as an assembly factor for CIII 2 . OCIAD2 was found deregulated in several carcinomas and also in some neurogenerative disorders, however its non-pathological role had not been elucidated. We have shown that OCIAD2 localizes to mitochondria and interacts with electron transport chain (ETC) proteins. Complete loss of OCIAD2 using gene editing in HEK293 cells resulted in abnormal mitochondrial morphology, a substantial decrease of both CIII 2 and supercomplex III 2 +IV, and reduction in CIII enzymatic activity. Identification of OCIAD2 as a protein required for assembly of functional CIII 2 provides a new insight into the biogenesis and architecture of the ETC. Elucidating the mechanism of OCIAD2 action is important both for the understanding of cellular metabolism and for an understanding of its role in malignant transformation."],["dc.description.abstract","Assembly of the dimeric complex III (CIII 2 ) in the mitochondrial inner membrane is an intricate process, in which several accessory proteins are involved as assembly factors. Despite numerous studies, this process is yet to be fully understood. Here we report the identification of human OCIAD2 (Ovarian Carcinoma Immunoreactive Antigen domain containing protein 2) protein as an assembly factor for CIII 2 . OCIAD2 was found deregulated in several carcinomas and also in some neurogenerative disorders, however its non-pathological role had not been elucidated. We have shown that OCIAD2 localizes to mitochondria and interacts with electron transport chain (ETC) proteins. Complete loss of OCIAD2 using gene editing in HEK293 cells resulted in abnormal mitochondrial morphology, a substantial decrease of both CIII 2 and supercomplex III 2 +IV, and reduction in CIII enzymatic activity. Identification of OCIAD2 as a protein required for assembly of functional CIII 2 provides a new insight into the biogenesis and architecture of the ETC. Elucidating the mechanism of OCIAD2 action is important both for the understanding of cellular metabolism and for an understanding of its role in malignant transformation."],["dc.identifier.doi","10.1091/mbc.E21-03-0143"],["dc.identifier.pmid","35080992"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/98832"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/396"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/169"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/6"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-517"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P04: Analyse der räumlichen Organisation der OXPHOS Assemblierung in Säugerzellen"],["dc.relation.eissn","1939-4586"],["dc.relation.issn","1059-1524"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.title","Ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) is a novel complex III specific assembly factor in mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article [["dc.bibliographiccitation.artnumber","S0167488921001877"],["dc.bibliographiccitation.firstpage","119133"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta. Molecular Cell Research"],["dc.bibliographiccitation.volume","1868"],["dc.contributor.author","Homberg, Bettina"],["dc.contributor.author","Römpler, Katharina"],["dc.contributor.author","Wissel, Mirjam"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2021-09-01T06:42:57Z"],["dc.date.available","2021-09-01T06:42:57Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1016/j.bbamcr.2021.119133"],["dc.identifier.pii","S0167488921001877"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89186"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-455"],["dc.relation.issn","0167-4889"],["dc.title","Rcf proteins and their differential specificity for respiratory chain complexes: A unique role for Rcf2 on oxygen sensitive supercomplexes?"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","139"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","EMBO Molecular Medicine"],["dc.bibliographiccitation.lastpage","154"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Cheng, I-Fen"],["dc.contributor.author","Chowdhury, Arpita"],["dc.contributor.author","Wozny, Katharina"],["dc.contributor.author","Balleininger, Martina"],["dc.contributor.author","Reinhold, Robert"],["dc.contributor.author","Grunau, Silke"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Toischer, Karl"],["dc.contributor.author","Wanders, Ronald JA"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Brügger, Britta"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:53:31Z"],["dc.date.available","2017-09-07T11:53:31Z"],["dc.date.issued","2016"],["dc.description.abstract","Barth syndrome (BTHS) is a cardiomyopathy caused by the loss of tafazzin, a mitochondrial acyltransferase involved in the maturation of the glycerophospholipid cardiolipin. It has remained enigmatic as to why a systemic loss of cardiolipin leads to cardiomyopathy. Using a genetic ablation of tafazzin function in the BTHS mouse model, we identified severe structural changes in respiratory chain supercomplexes at a pre‐onset stage of the disease. This reorganization of supercomplexes was specific to cardiac tissue and could be recapitulated in cardiomyocytes derived from BTHS patients. Moreover, our analyses demonstrate a cardiac‐specific loss of succinate dehydrogenase (SDH), an enzyme linking the respiratory chain with the tricarboxylic acid cycle. As a similar defect of SDH is apparent in patient cell‐derived cardiomyocytes, we conclude that these defects represent a molecular basis for the cardiac pathology in Barth syndrome."],["dc.identifier.doi","10.15252/emmm.201505644"],["dc.identifier.fs","615879"],["dc.identifier.gro","3145083"],["dc.identifier.pmid","26697888"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13136"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2780"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/101"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation.issn","1757-4676"],["dc.relation.issn","1757-4684"],["dc.relation.workinggroup","RG Guan (Application of patient-specific induced pluripotent stem cells in disease modelling)"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Toischer (Kardiales Remodeling)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject","Barth syndrome; Cardiolipin, Mitochondriar; Respiratory chain; Succinate dehydrogenase"],["dc.title","Cardiac-specific succinate dehydrogenase deficiency in Barth syndrome"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article [["dc.bibliographiccitation.artnumber","31"],["dc.bibliographiccitation.journal","Frontiers in Cell and Developmental Biology"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Dennerlein, Sven"],["dc.date.accessioned","2019-07-09T11:50:15Z"],["dc.date.available","2019-07-09T11:50:15Z"],["dc.date.issued","2018"],["dc.description.abstract","Mitochondria exist as compartmentalized units, surrounded by a selectively permeable double membrane. Within is contained the mitochondrial genome and protein synthesis machinery, required for the synthesis of OXPHOS components and ultimately, ATP production. Despite their physical barrier, mitochondria are tightly integrated into the cellular environment. A constant flow of information must be maintained to and from the mitochondria and the nucleus, to ensure mitochondria are amenable to cell metabolic requirements and also to feedback on their functional state. This review highlights the pathways by which mitochondrial stress is signaled to the nucleus, with a particular focus on the mitochondrial unfolded protein response (UPRmt) and the unfolded protein response activated by the mistargeting of proteins (UPRam). Although these pathways were originally discovered to alleviate proteotoxic stress from the accumulation of mitochondrial-targeted proteins that are misfolded or unimported, we review recent findings indicating that the UPRmt can also sense defects in mitochondrial translation. We further discuss the regulation of OXPHOS assembly and speculate on a possible role for mitochondrial stress pathways in sensing OXPHOS biogenesis."],["dc.identifier.doi","10.3389/fcell.2018.00031"],["dc.identifier.pmid","29644217"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15892"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59732"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/339580/EU//MITRAC"],["dc.relation.issn","2296-634X"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Sensing the Stress: A Role for the UPRmt and UPRam in the Quality Control of Mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","4147"],["dc.bibliographiccitation.issue","23"],["dc.bibliographiccitation.journal","FEBS Letters"],["dc.bibliographiccitation.lastpage","4158"],["dc.bibliographiccitation.volume","590"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Richter, Frank"],["dc.contributor.author","Chojnacka, Katarzyna"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:53:09Z"],["dc.date.available","2017-09-07T11:53:09Z"],["dc.date.issued","2016"],["dc.description.abstract","Hydrophobic inner mitochondrial membrane proteins with internal targeting signals, such as the metabolite carriers, use the carrier translocase (TIM22 complex) for transport into the inner membrane. Defects in this transport pathway have been associated with neurodegenerative disorders. While the TIM22 complex is well studied in baker's yeast, very little is known about the mammalian TIM22 complex. Using immunoprecipitation, we purified the human carrier translocase and identified a mitochondrial inner membrane protein TIM29 as a novel component, specific to metazoa. We show that TIM29 is a constituent of the 440 kDa TIM22 complex and interacts with oxidized TIM22. Our analyses demonstrate that TIM29 is required for the structural integrity of the TIM22 complex and for import of substrate proteins by the carrier translocase."],["dc.identifier.doi","10.1002/1873-3468.12450"],["dc.identifier.fs","625768"],["dc.identifier.gro","3145043"],["dc.identifier.pmid","27718247"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14166"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2736"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/59"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation.issn","0014-5793"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","TIM29 is a subunit of the human carrier translocase required for protein transport"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","157"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","FEBS Letters"],["dc.bibliographiccitation.lastpage","168"],["dc.bibliographiccitation.volume","595"],["dc.contributor.author","Valpadashi, Anusha"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Ficner, Ralf"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2021-04-14T08:32:24Z"],["dc.date.available","2021-04-14T08:32:24Z"],["dc.date.issued","2020"],["dc.description.abstract","The majority of mitochondrial proteins are nuclear encoded and imported into mitochondria as precursor proteins via dedicated translocases. The translocase of the inner membrane 22 (TIM22) is a multisubunit molecular machine specialized for the translocation of hydrophobic, multi‐transmembrane‐spanning proteins with internal targeting signals into the inner mitochondrial membrane. Here, we undertook a crosslinking‐mass spectrometry (XL‐MS) approach to determine the molecular arrangement of subunits of the human TIM22 complex. Crosslinking of the isolated TIM22 complex using the BS3 crosslinker resulted in the broad generation of crosslinks across the majority of TIM22 components, including the small TIM chaperone complex. The crosslinking data uncovered several unexpected features, opening new avenues for a deeper investigation into the steps required for TIM22‐mediated translocation in humans."],["dc.description.abstract","image"],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship","Max Planck Society http://dx.doi.org/10.13039/501100004189"],["dc.identifier.doi","10.1002/1873-3468.13978"],["dc.identifier.pmid","33125709"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83911"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/86"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/129"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation.eissn","1873-3468"],["dc.relation.issn","0014-5793"],["dc.relation.workinggroup","RG Ficner (Molecular Structural Biology)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made."],["dc.title","Defining the architecture of the human TIM22 complex by chemical crosslinking"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020-03-23Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1119"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Current Biology"],["dc.bibliographiccitation.lastpage","1127.e5"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Gomkale, Ridhima"],["dc.contributor.author","Cruz-Zaragoza, Luis Daniel"],["dc.contributor.author","Suppanz, Ida E."],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Montoya, Julio"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2020-04-29T13:50:08Z"],["dc.date.available","2020-04-29T13:50:08Z"],["dc.date.issued","2020-03-23"],["dc.description.abstract","In mitochondria, the carrier translocase (TIM22 complex) facilitates membrane insertion of multi-spanning proteins with internal targeting signals into the inner membrane [1-3]. Tom70, a subunit of TOM complex, represents the major receptor for these precursors [2, 4-6]. After transport across the outer membrane, the hydrophobic carriers engage with the small TIM protein complex composed of Tim9 and Tim10 for transport across the intermembrane space (IMS) toward the TIM22 complex [7-12]. Tim22 represents the pore-forming core unit of the complex [13, 14]. Only a small subset of TIM22 cargo molecules, containing four or six transmembrane spans, have been experimentally defined. Here, we used a tim22 temperature-conditional mutant to define the TIM22 substrate spectrum. Along with carrier-like cargo proteins, we identified subunits of the mitochondrial pyruvate carrier (MPC) as unconventional TIM22 cargos. MPC proteins represent substrates with atypical topology for this transport pathway. In agreement with this, a patient affected in TIM22 function displays reduced MPC levels. Our findings broaden the repertoire of carrier pathway substrates and challenge current concepts of TIM22-mediated transport processes."],["dc.identifier.doi","10.1016/j.cub.2020.01.024"],["dc.identifier.pmid","32142709"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/64483"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/107"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation.eissn","1879-0445"],["dc.relation.issn","0960-9822"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Defining the Substrate Spectrum of the TIM22 Complex Identifies Pyruvate Carrier Subunits as Unconventional Cargos"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article [["dc.bibliographiccitation.firstpage","201"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Autophagy"],["dc.bibliographiccitation.lastpage","211"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Thumm, Michael"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dudek, Jan"],["dc.date.accessioned","2017-09-07T11:53:21Z"],["dc.date.available","2017-09-07T11:53:21Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1080/15548627.2016.1254852"],["dc.identifier.gro","3145079"],["dc.identifier.pmid","27846363"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2775"],["dc.notes.intern","Crossref Import"],["dc.notes.status","final"],["dc.relation.issn","1554-8627"],["dc.subject","E3 ubiquitin ligase; PARK2; PINK1; Parkin; Parkinson disease; autophagy; mitochondria; mitophagy; phospho-ubiquitin"],["dc.title","Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI PMID PMC