Options
Obenchain, Daniel
Loading...
Preferred name
Obenchain, Daniel
Official Name
Obenchain, Daniel
Alternative Name
Obenchain, Daniel A.
Obenchain, D. A.
Obenchain, D.
Main Affiliation
Email
daniel.obenchain@uni-goettingen.de
Now showing 1 - 10 of 41
2017Journal Article Research Paper [["dc.bibliographiccitation.firstpage","37867"],["dc.bibliographiccitation.issue","60"],["dc.bibliographiccitation.journal","RSC Advances"],["dc.bibliographiccitation.lastpage","37872"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Hansen, N."],["dc.contributor.author","Wullenkord, J."],["dc.contributor.author","Obenchain, D. A."],["dc.contributor.author","Graf, I."],["dc.contributor.author","Kohse-Höinghaus, K."],["dc.contributor.author","Grabow, J.-U."],["dc.date.accessioned","2020-11-23T15:55:58Z"],["dc.date.available","2020-11-23T15:55:58Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1039/C7RA06483G"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69083"],["dc.relation.issn","2046-2069"],["dc.title","Microwave spectroscopic detection of flame-sampled combustion intermediates"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2014-09-21Journal Article Research Paper [["dc.bibliographiccitation.firstpage","114306"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","The Journal of Chemical Physics"],["dc.bibliographiccitation.volume","141"],["dc.contributor.author","Grubbs, G. S."],["dc.contributor.author","Obenchain, Daniel A."],["dc.contributor.author","Pickett, Herbert M."],["dc.contributor.author","Novick, Stewart E."],["dc.date.accessioned","2020-11-23T15:57:13Z"],["dc.date.available","2020-11-23T15:57:13Z"],["dc.date.issued","2014-09-21"],["dc.description.abstract","H2-AgCl has been observed on a Fourier transform microwave spectrometer equipped with laser ablation source and determined to be a dihydrogen complex. Transitions up to J = 3-2 have been measured and analyzed for four isotopologues of the complex containing ortho and para H2. The ortho and para spin states have been included in one fit, a deviation from the typical H2 complex. Rotational constants B and C, centrifugal distortion constants Δ(J) and Δ(JK), nuclear electric quadrupole coupling constants χ(aa), χ(bb), and χ(cc) for (35)Cl and (37)Cl have been fit for both spin states while nuclear spin-nuclear spin constants D(aa), D(bb), and D(cc), and nuclear spin-rotation constant C(aa) have been reported for the ortho spin state. Quantum chemical calculations predict a strong bonding interaction and the strength of the complex has been related to reported χ(aa) and Δ(J) values amongst a host of comparable species, including the AgCl monomer itself. Bond lengths have been determined for Ag-Cl, Ag-H2 center-of-mass, and H-H and are reported."],["dc.identifier.doi","10.1063/1.4895904"],["dc.identifier.pmid","25240357"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69096"],["dc.language.iso","en"],["dc.relation.eissn","1089-7690"],["dc.relation.haserratum","/handle/2/69091"],["dc.relation.issn","0021-9606"],["dc.title","H₂-AgCl: a spectroscopic study of a dihydrogen complex"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","50"],["dc.bibliographiccitation.journal","Journal of Molecular Spectroscopy"],["dc.bibliographiccitation.lastpage","58"],["dc.bibliographiccitation.volume","328"],["dc.contributor.author","Kim, Jihyun"],["dc.contributor.author","Jang, Heesu"],["dc.contributor.author","Ka, Soohyun"],["dc.contributor.author","Obenchain, Daniel A."],["dc.contributor.author","Peebles, Rebecca A."],["dc.contributor.author","Peebles, Sean A."],["dc.contributor.author","Oh, Jung Jin"],["dc.date.accessioned","2020-11-23T15:56:16Z"],["dc.date.available","2020-11-23T15:56:16Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1016/j.jms.2016.08.004"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69087"],["dc.relation.issn","0022-2852"],["dc.title","Microwave spectrum of 1-bromobutane"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2015-07-14Journal Article Research Paper [["dc.bibliographiccitation.firstpage","17266"],["dc.bibliographiccitation.issue","26"],["dc.bibliographiccitation.journal","Physical Chemistry, Chemical Physics"],["dc.bibliographiccitation.lastpage","17270"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Lin, Wei"],["dc.contributor.author","Wu, Anan"],["dc.contributor.author","Lu, Xin"],["dc.contributor.author","Tang, Xiao"],["dc.contributor.author","Obenchain, Daniel A."],["dc.contributor.author","Novick, Stewart E."],["dc.date.accessioned","2020-11-23T15:56:37Z"],["dc.date.available","2020-11-23T15:56:37Z"],["dc.date.issued","2015-07-14"],["dc.description.abstract","The rotational spectrum of trifluoroacetonitrile-water complex has been studied by pulsed-nozzle, Fourier transform microwave spectroscopy. Both a-type and b-type transitions have been observed. The rotational constants, centrifugal distortion constants, and the (14)N nuclear quadrupole coupling constants have been determined. The complex is T-shaped, with the oxygen atom from the water located 3.135 Å from the carbon atom of CF3 of the trifluoroacetonitrile molecule."],["dc.identifier.doi","10.1039/c5cp01550b"],["dc.identifier.pmid","26073642"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69092"],["dc.language.iso","en"],["dc.relation.eissn","1463-9084"],["dc.title","Internal dynamics in the molecular complex of CF3CN and H2O"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article [["dc.bibliographiccitation.firstpage","149"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry Letters"],["dc.bibliographiccitation.lastpage","155"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Wang, Hao"],["dc.contributor.author","Chen, Junhua"],["dc.contributor.author","Zheng, Yang"],["dc.contributor.author","Obenchain, Daniel A."],["dc.contributor.author","Xu, Xuefang"],["dc.contributor.author","Gou, Qian"],["dc.contributor.author","Grabow, Jens-Uwe"],["dc.contributor.author","Caminati, Walther"],["dc.date.accessioned","2022-02-01T10:32:14Z"],["dc.date.available","2022-02-01T10:32:14Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1021/acs.jpclett.1c03740"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/99042"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-517"],["dc.relation.eissn","1948-7185"],["dc.relation.issn","1948-7185"],["dc.title","Interaction Types in C 6 H 5 (CH 2 ) n OH–CO 2 ( n = 0–4) Determined by the Length of the Side Alkyl Chain"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2011Journal Article Research Paper [["dc.bibliographiccitation.firstpage","31"],["dc.bibliographiccitation.issue","1-3"],["dc.bibliographiccitation.journal","Journal of Molecular Structure"],["dc.bibliographiccitation.lastpage","40"],["dc.bibliographiccitation.volume","1003"],["dc.contributor.author","Stidham, Howard D."],["dc.contributor.author","LaPlante, Arthur J."],["dc.contributor.author","Oh, Jung-Jin"],["dc.contributor.author","Obenchain, Daniel A."],["dc.contributor.author","Peebles, Sean A."],["dc.contributor.author","Peebles, Rebecca A."],["dc.contributor.author","Wurrey, Charles J."],["dc.contributor.author","Marrow, Ethan"],["dc.contributor.author","Guirgis, Gamil A."],["dc.date.accessioned","2020-11-23T15:57:03Z"],["dc.date.available","2020-11-23T15:57:03Z"],["dc.date.issued","2011"],["dc.identifier.doi","10.1016/j.molstruc.2011.06.048"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69094"],["dc.relation.issn","0022-2860"],["dc.title","Microwave and vibrational spectra, ab initio calculations, conformational stabilities and assignments of the fundamentals of the Cs conformer of n-butylsilane"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2010Journal Article Research Paper [["dc.bibliographiccitation.firstpage","35"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Molecular Spectroscopy"],["dc.bibliographiccitation.lastpage","40"],["dc.bibliographiccitation.volume","261"],["dc.contributor.author","Obenchain, Daniel A."],["dc.contributor.author","Elliott, Ashley A."],["dc.contributor.author","Steber, Amanda L."],["dc.contributor.author","Peebles, Rebecca A."],["dc.contributor.author","Peebles, Sean A."],["dc.contributor.author","Wurrey, Charles J."],["dc.contributor.author","Guirgis, Gamil A."],["dc.date.accessioned","2020-11-23T15:57:43Z"],["dc.date.available","2020-11-23T15:57:43Z"],["dc.date.issued","2010"],["dc.identifier.doi","10.1016/j.jms.2010.03.002"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69103"],["dc.relation.issn","0022-2852"],["dc.title","Rotational spectrum of three conformers of 3,3-difluoropentane: Construction of a 480MHz bandwidth chirped-pulse Fourier-transform microwave spectrometer"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Journal of Molecular Spectroscopy"],["dc.bibliographiccitation.lastpage","5"],["dc.bibliographiccitation.volume","324"],["dc.contributor.author","Grubbs, G. S."],["dc.contributor.author","Frank, Derek S."],["dc.contributor.author","Obenchain, Daniel A."],["dc.contributor.author","Cooke, S. A."],["dc.contributor.author","Novick, Stewart E."],["dc.date.accessioned","2020-11-23T15:56:29Z"],["dc.date.available","2020-11-23T15:56:29Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1016/j.jms.2016.04.001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69090"],["dc.relation.issn","0022-2852"],["dc.title","The pure rotational spectrum of a Claisen rearrangement precursor Allyl Phenyl Ether using CP-FTMW spectroscopy"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article [["dc.bibliographiccitation.firstpage","25784"],["dc.bibliographiccitation.issue","45"],["dc.bibliographiccitation.journal","Physical Chemistry Chemical Physics"],["dc.bibliographiccitation.lastpage","25788"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Wang, Hao"],["dc.contributor.author","Wang, Xiujuan"],["dc.contributor.author","Tian, Xiao"],["dc.contributor.author","Cheng, Wanying"],["dc.contributor.author","Zheng, Yang"],["dc.contributor.author","Obenchain, Daniel A."],["dc.contributor.author","Xu, Xuefang"],["dc.contributor.author","Gou, Qian"],["dc.date.accessioned","2021-12-01T09:20:54Z"],["dc.date.available","2021-12-01T09:20:54Z"],["dc.date.issued","2021"],["dc.description.abstract","The rotational spectrum of the 1 : 1 benzaldehyde–CO 2 complex has been investigated using pulsed-jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations."],["dc.description.abstract","The rotational spectrum of the 1 : 1 benzaldehyde–CO 2 complex has been investigated using pulsed-jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Two isomers, both characterized by one C⋯O tetrel bond (n → π interaction) and one C–H⋯O hydrogen bond (n → σ interaction), have been observed in the pulsed jet. Competition between the tetrel bond and the hydrogen bond has been disclosed by natural bond orbital analysis: isomer I is characterized by one dominating OC CO 2 ⋯O tetrel bond (12.6 kJ mol −1 ) and a secondary (C–H) formyl ⋯O hydrogen bond (2.2 kJ mol −1 ); by contrast, in isomer II the (C–H) phenyl ⋯O hydrogen bond (7.6 kJ mol −1 ) becomes the dominant bond, while the OC CO 2 ⋯O tetrel bond (5.8 kJ mol −1 ) becomes much weaker with respect to that of isomer I. Using intensity measurements the relative population ratio of the two isomers was estimated to be N I / N II ≈ 2/1."],["dc.description.abstract","The rotational spectrum of the 1 : 1 benzaldehyde–CO 2 complex has been investigated using pulsed-jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations."],["dc.description.abstract","The rotational spectrum of the 1 : 1 benzaldehyde–CO 2 complex has been investigated using pulsed-jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Two isomers, both characterized by one C⋯O tetrel bond (n → π interaction) and one C–H⋯O hydrogen bond (n → σ interaction), have been observed in the pulsed jet. Competition between the tetrel bond and the hydrogen bond has been disclosed by natural bond orbital analysis: isomer I is characterized by one dominating OC CO 2 ⋯O tetrel bond (12.6 kJ mol −1 ) and a secondary (C–H) formyl ⋯O hydrogen bond (2.2 kJ mol −1 ); by contrast, in isomer II the (C–H) phenyl ⋯O hydrogen bond (7.6 kJ mol −1 ) becomes the dominant bond, while the OC CO 2 ⋯O tetrel bond (5.8 kJ mol −1 ) becomes much weaker with respect to that of isomer I. Using intensity measurements the relative population ratio of the two isomers was estimated to be N I / N II ≈ 2/1."],["dc.identifier.doi","10.1039/D1CP03608D"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94299"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation.eissn","1463-9084"],["dc.relation.issn","1463-9076"],["dc.title","Competitive tetrel bond and hydrogen bond in benzaldehyde–CO 2 : characterization via rotational spectroscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article [["dc.bibliographiccitation.firstpage","27312"],["dc.bibliographiccitation.issue","44"],["dc.bibliographiccitation.journal","Physical Chemistry Chemical Physics"],["dc.bibliographiccitation.lastpage","27320"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Singh, Himanshi"],["dc.contributor.author","Pinacho, Pablo"],["dc.contributor.author","Obenchain, Daniel A."],["dc.contributor.author","Quesada-Moreno, María Mar"],["dc.contributor.author","Schnell, Melanie"],["dc.date.accessioned","2022-12-01T08:30:59Z"],["dc.date.available","2022-12-01T08:30:59Z"],["dc.date.issued","2022"],["dc.description.abstract","Five conformers of the flexible molecule alpha-methoxy phenylacetic acid were identified using rotational spectroscopy. The conformational landscape, internal dynamics, and intramolecular interactions were investigated."],["dc.description.abstract","We present a rotational spectroscopy study of alpha-methoxy phenylacetic acid in the gas phase. This acid is a derivative of mandelic acid and is used in various organic reactions. The conformational landscape of alpha-methoxy phenylacetic acid was explored to gain insight into its intramolecular dynamics. A rich rotational spectrum was obtained using chirped-pulse Fourier transform microwave spectroscopy in the 2–8 GHz range. Five conformers out of six calculated low-energy forms were identified in the spectrum, and the assignment of the\r\n 13\r\n C singly substituted isotopologues for the lowest-energy conformer led to its accurate structure determination. Splitting patterns were analyzed and attributed to the internal rotation of a methyl top. The analysis of the non-covalent interactions within the molecule highlights the subtle balance in the stabilization of the different conformers. We thus provide high-level structural and intramolecular dynamics information that is also used to benchmark the performance of quantum-chemical calculations."],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659"],["dc.description.sponsorship"," Fundación Alfonso Martín Escudero https://doi.org/10.13039/100008052"],["dc.description.sponsorship"," Alexander von Humboldt-Stiftung https://doi.org/10.13039/100005156"],["dc.description.sponsorship"," Agencia de Innovación y Desarrollo de Andalucía https://doi.org/10.13039/501100006461"],["dc.identifier.doi","10.1039/D2CP03962A"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/118037"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.eissn","1463-9084"],["dc.relation.issn","1463-9076"],["dc.rights.uri","http://rsc.li/journals-terms-of-use"],["dc.title","The many forms of alpha-methoxy phenylacetic acid in the gas phase: flexibility, internal dynamics, and their intramolecular interactions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI