Now showing 1 - 7 of 7
  • 2018Journal Article
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Orphanet Journal of Rare Diseases"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Vieitez, Irene"],["dc.contributor.author","Souto-Rodriguez, Olga"],["dc.contributor.author","Fernandez-Mosquera, Lorena"],["dc.contributor.author","San Millan, Beatriz"],["dc.contributor.author","Teijeira, Susana"],["dc.contributor.author","Fernandez-Martin, Julian"],["dc.contributor.author","Martinez-Sanchez, Felisa"],["dc.contributor.author","Aldamiz-Echevarria, Luis Jose"],["dc.contributor.author","Lopez-Rodriguez, Monica"],["dc.contributor.author","Navarro, Carmen"],["dc.contributor.author","Ortolano, Saida"],["dc.date.accessioned","2020-12-10T18:39:02Z"],["dc.date.available","2020-12-10T18:39:02Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1186/s13023-018-0792-8"],["dc.identifier.eissn","1750-1172"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15501"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77523"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Fabry disease in the Spanish population: observational study with detection of 77 patients"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","e202101185"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Life Science Alliance"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Riera-Tur, Irene"],["dc.contributor.author","Schäfer, Tillman"],["dc.contributor.author","Hornburg, Daniel"],["dc.contributor.author","Mishra, Archana"],["dc.contributor.author","da Silva Padilha, Miguel"],["dc.contributor.author","Fernández-Mosquera, Lorena"],["dc.contributor.author","Feigenbutz, Dennis"],["dc.contributor.author","Auer, Patrick"],["dc.contributor.author","Mann, Matthias"],["dc.contributor.author","Baumeister, Wolfgang"],["dc.contributor.author","Dudanova, Irina"],["dc.date.accessioned","2022-01-11T14:08:06Z"],["dc.date.available","2022-01-11T14:08:06Z"],["dc.date.issued","2021"],["dc.description.abstract","The autophagy-lysosomal pathway is impaired in many neurodegenerative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like β-sheet proteins (β proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, β proteins interact with and sequester AP-3 μ1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3μ1 expression ameliorates neurotoxicity caused by β proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity."],["dc.identifier.doi","10.26508/lsa.202101185"],["dc.identifier.pmid","34933920"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/97935"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/379"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/56"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-507"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | A07: Functional proteomics dissection of phagocyte derived signals during CNS inflammation and recovery"],["dc.relation.eissn","2575-1077"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.relation.workinggroup","RG Meissner (Experimental Systems Immunology)"],["dc.rights","CC BY 4.0"],["dc.title","Amyloid-like aggregating proteins cause lysosomal defects in neurons via gain-of-function toxicity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","45076"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Fernandez-Mosquera, Lorena"],["dc.contributor.author","Diogo, Catia V."],["dc.contributor.author","Yambire, King Faisal"],["dc.contributor.author","Santos, Gabriela L."],["dc.contributor.author","Luna Sanchez, Marta"],["dc.contributor.author","Benit, Paule"],["dc.contributor.author","Rustin, Pierre"],["dc.contributor.author","Carlos Lopez, Luis"],["dc.contributor.author","Milosevic, Ira"],["dc.contributor.author","Raimundo, Nuno"],["dc.date.accessioned","2018-11-07T10:26:02Z"],["dc.date.available","2018-11-07T10:26:02Z"],["dc.date.issued","2017"],["dc.description.abstract","Mitochondria are key cellular signaling platforms, affecting fundamental processes such as cell proliferation, differentiation and death. However, it remains unclear how mitochondrial signaling affects other organelles, particularly lysosomes. Here, we demonstrate that mitochondrial respiratory chain (RC) impairments elicit a stress signaling pathway that regulates lysosomal biogenesis via the microphtalmia transcription factor family. Interestingly, the effect of mitochondrial stress over lysosomal biogenesis depends on the timeframe of the stress elicited: while RC inhibition with rotenone or uncoupling with CCCP initially triggers lysosomal biogenesis, the effect peaks after few hours and returns to baseline. Long-term RC inhibition by long-term treatment with rotenone, or patient mutations in fibroblasts and in a mouse model result in repression of lysosomal biogenesis. The induction of lysosomal biogenesis by short-term mitochondrial stress is dependent on TFEB and MITF, requires AMPK signaling and is independent of calcineurin signaling. These results reveal an integrated view of how mitochondrial signaling affects lysosomes, which is essential to fully comprehend the consequences of mitochondrial malfunction, particularly in the context of mitochondrial diseases."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.1038/srep45076"],["dc.identifier.isi","000397760800001"],["dc.identifier.pmid","28345620"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14396"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42963"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Acute and chronic mitochondrial respiratory chain deficiency differentially regulate lysosomal biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article Overview
    [["dc.bibliographiccitation.firstpage","87"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Biochemical and Biophysical Research Communications"],["dc.bibliographiccitation.lastpage","93"],["dc.bibliographiccitation.volume","500"],["dc.contributor.author","Diogo, Cátia V."],["dc.contributor.author","Yambire, King Faisal"],["dc.contributor.author","Fernández Mosquera, Lorena"],["dc.contributor.author","Branco F., Tiago"],["dc.contributor.author","Raimundo, Nuno"],["dc.date.accessioned","2020-12-10T14:22:35Z"],["dc.date.available","2020-12-10T14:22:35Z"],["dc.date.issued","2018"],["dc.description.abstract","Mitochondria are constantly communicating with the rest of the cell. Defects in mitochondria underlie severe pathologies, whose mechanisms remain poorly understood. It is becoming increasingly evident that mitochondrial malfunction resonates in other organelles, perturbing their function and their biogenesis. In this manuscript, we review the current knowledge on the cross-talk between mitochondria and other organelles, particularly lysosomes, peroxisomes and the endoplasmic reticulum. Several organelle interactions are mediated by transcriptional programs, and other signaling mechanisms are likely mediating organelle dysfunction downstream of mitochondrial impairments. Many of these organelle crosstalk pathways are likely to have a role in pathological processes."],["dc.identifier.doi","10.1016/j.bbrc.2017.04.124"],["dc.identifier.pmid","28456629"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71662"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/23"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P02: Charakterisierung der ER-Mitochondrien-Kontakte und ihre Rolle in der Signalweiterleitung"],["dc.relation.workinggroup","RG Raimundo"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Mitochondrial adventures at the organelle society"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e39598"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Yambire, King Faisal"],["dc.contributor.author","Fernandez-Mosquera, Lorena"],["dc.contributor.author","Steinfeld, Robert"],["dc.contributor.author","Mühle, Christiane"],["dc.contributor.author","Ikonen, Elina"],["dc.contributor.author","Raimundo, Nuno"],["dc.contributor.author","Milošević, Ira"],["dc.date.accessioned","2020-12-10T18:48:06Z"],["dc.date.available","2020-12-10T18:48:06Z"],["dc.date.issued","2019"],["dc.description.abstract","Perturbations in mitochondrial function and homeostasis are pervasive in lysosomal storage diseases, but the underlying mechanisms remain unknown. Here, we report a transcriptional program that represses mitochondrial biogenesis and function in lysosomal storage diseases Niemann-Pick type C (NPC) and acid sphingomyelinase deficiency (ASM), in patient cells and mouse tissues. This mechanism is mediated by the transcription factors KLF2 and ETV1, which are both induced in NPC and ASM patient cells. Mitochondrial biogenesis and function defects in these cells are rescued by the silencing of KLF2 or ETV1. Increased ETV1 expression is regulated by KLF2, while the increase of KLF2 protein levels in NPC and ASM stems from impaired signaling downstream sphingosine-1-phosphate receptor 1 (S1PR1), which normally represses KLF2. In patient cells, S1PR1 is barely detectable at the plasma membrane and thus unable to repress KLF2. This manuscript provides a mechanistic pathway for the prevalent mitochondrial defects in lysosomal storage diseases."],["dc.identifier.doi","10.7554/eLife.39598"],["dc.identifier.pmid","30775969"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15862"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/79020"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/58"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P02: Charakterisierung der ER-Mitochondrien-Kontakte und ihre Rolle in der Signalweiterleitung"],["dc.relation.eissn","2050-084X"],["dc.relation.issn","2050-084X"],["dc.relation.workinggroup","RG Milosevic (Synaptic Vesicle Dynamics)"],["dc.relation.workinggroup","RG Raimundo"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","345"],["dc.bibliographiccitation.journal","The International Journal of Biochemistry & Cell Biology"],["dc.bibliographiccitation.lastpage","349"],["dc.bibliographiccitation.volume","79"],["dc.contributor.author","Raimundo, Nuno"],["dc.contributor.author","Fernandez-Mosquera, Lorena"],["dc.contributor.author","Yambire, King Faisal"],["dc.contributor.author","Diogo, Catia V."],["dc.date.accessioned","2018-11-07T10:07:34Z"],["dc.date.available","2018-11-07T10:07:34Z"],["dc.date.issued","2016"],["dc.description.abstract","Mitochondria and lysosomes have long been studied in the context of their classic functions: energy factory and recycle bin, respectively. In the last twenty years, it became evident that these organelles are much more than simple industrial units, and are indeed in charge of many of cellular processes. Both mitochondria and lysosomes are now recognized as far-reaching signaling platforms, regulating many key aspects of cell and tissue physiology. It has furthermore become clear that mitochondria and lysosomes impact each other. The mechanisms underlying the cross-talk between these organelles are only now starting to be addressed. In this review, we briefly summarize how mitochondria, lysosomes and the lysosome-related process of autophagy affect each other in physiology and pathology. (C) 2016 Elsevier Ltd. All rights reserved."],["dc.identifier.doi","10.1016/j.biocel.2016.08.020"],["dc.identifier.isi","000386985900036"],["dc.identifier.pmid","27613573"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39303"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Pergamon-elsevier Science Ltd"],["dc.relation.issn","1878-5875"],["dc.relation.issn","1357-2725"],["dc.title","Mechanisms of communication between mitochondria and lysosomes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","27"],["dc.bibliographiccitation.journal","Autophagy"],["dc.bibliographiccitation.lastpage","20"],["dc.contributor.author","Fernandez-Mosquera, Lorena"],["dc.contributor.author","Yambire, King Faisal"],["dc.contributor.author","Couto, Renata"],["dc.contributor.author","Pereyra, Leonardo"],["dc.contributor.author","Pabis, Kamil"],["dc.contributor.author","Ponsford, Amy H."],["dc.contributor.author","Diogo, Cátia V."],["dc.contributor.author","Stagi, Massimiliano"],["dc.contributor.author","Milošević, Ira"],["dc.contributor.author","Raimundo, Nuno"],["dc.date.accessioned","2019-07-09T11:51:24Z"],["dc.date.available","2019-07-09T11:51:24Z"],["dc.date.issued","2019"],["dc.description.abstract","Mitochondria are key organelles for cellular metabolism, and regulate several processes including cell death and macroautophagy/autophagy. Here, we show that mitochondrial respiratory chain (RC) deficiency deactivates AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis) signaling in tissue and in cultured cells. The deactivation of AMPK in RC-deficiency is due to increased expression of the AMPK-inhibiting protein FLCN (folliculin). AMPK is found to be necessary for basal lysosomal function, and AMPK deactivation in RC-deficiency inhibits lysosomal function by decreasing the activity of the lysosomal Ca2+ channel MCOLN1 (mucolipin 1). MCOLN1 is regulated by phosphoinositide kinase PIKFYVE and its product PtdIns(3,5)P2, which is also decreased in RC-deficiency. Notably, reactivation of AMPK, in a PIKFYVE-dependent manner, or of MCOLN1 in RC-deficient cells, restores lysosomal hydrolytic capacity. Building on these data and the literature, we propose that downregulation of the AMPK-PIKFYVE-PtdIns(3,5)P2-MCOLN1 pathway causes lysosomal Ca2+ accumulation and impaired lysosomal catabolism. Besides unveiling a novel role of AMPK in lysosomal function, this study points to the mechanism that links mitochondrial malfunction to impaired lysosomal catabolism, underscoring the importance of AMPK and the complexity of organelle cross-talk in the regulation of cellular homeostasis. Abbreviation: ΔΨm: mitochondrial transmembrane potential; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATP: adenosine triphosphate; ATP6V0A1: ATPase, H+ transporting, lysosomal, V0 subbunit A1; ATP6V1A: ATPase, H+ transporting, lysosomal, V0 subbunit A; BSA: bovine serum albumin; CCCP: carbonyl cyanide-m-chlorophenylhydrazone; CREB1: cAMP response element binding protein 1; CTSD: cathepsin D; CTSF: cathepsin F; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; EBSS: Earl's balanced salt solution; ER: endoplasmic reticulum; FBS: fetal bovine serum; FCCP: carbonyl cyanide-p-trifluoromethoxyphenolhydrazone; GFP: green fluorescent protein; GPN: glycyl-L-phenylalanine 2-naphthylamide; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin 1; MEF: mouse embryonic fibroblast; MITF: melanocyte inducing transcription factor; ML1N 2-GFP: probe used to detect PtdIns(3,5)P2 based on the transmembrane domain of MCOLN1; MTORC1: mechanistic target of rapamycin kinase complex 1; NDUFS4: NADH:ubiquinone oxidoreductase subunit S4; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; pcDNA: plasmid cytomegalovirus promoter DNA; PCR: polymerase chain reaction; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; P/S: penicillin-streptomycin; PVDF: polyvinylidene fluoride; qPCR: quantitative real time polymerase chain reaction; RFP: red fluorescent protein; RNA: ribonucleic acid; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; shRNA: short hairpin RNA; siRNA: small interfering RNA; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TMRM: tetramethylrhodamine, methyl ester, perchlorate; ULK1: unc-51 like autophagy activating kinase 1; ULK2: unc-51 like autophagy activating kinase 2; UQCRC1: ubiquinol-cytochrome c reductase core protein 1; v-ATPase: vacuolar-type H+-translocating ATPase; WT: wild-type."],["dc.identifier.doi","10.1080/15548627.2019.1586256"],["dc.identifier.pmid","30917721"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16120"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59941"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/63"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/337327/EU//MITOPEXLYSONETWORK"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P02: Charakterisierung der ER-Mitochondrien-Kontakte und ihre Rolle in der Signalweiterleitung"],["dc.relation.workinggroup","RG Milosevic (Synaptic Vesicle Dynamics)"],["dc.relation.workinggroup","RG Raimundo"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.subject.ddc","612"],["dc.title","Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC