Options
Weischedel, Clarisse
Loading...
Preferred name
Weischedel, Clarisse
Official Name
Weischedel, Clarisse
Alternative Name
Weischedel, C.
Main Affiliation
Now showing 1 - 2 of 2
2017Journal Article [["dc.bibliographiccitation.firstpage","90"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Communications of the ACM"],["dc.bibliographiccitation.lastpage","99"],["dc.bibliographiccitation.volume","60"],["dc.contributor.author","Crane, Keenan"],["dc.contributor.author","Weischedel, Clarisse"],["dc.contributor.author","Wardetzky, Max"],["dc.date.accessioned","2020-12-10T18:37:37Z"],["dc.date.available","2020-12-10T18:37:37Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1145/3131280"],["dc.identifier.eissn","1557-7317"],["dc.identifier.issn","0001-0782"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77038"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","The heat method for distance computation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2013Journal Article [["dc.bibliographiccitation.artnumber","152"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","ACM Transactions on Graphics"],["dc.bibliographiccitation.lastpage","11"],["dc.bibliographiccitation.volume","32"],["dc.contributor.author","Crane, Keenan"],["dc.contributor.author","Weischedel, Clarisse"],["dc.contributor.author","Wardetzky, Max"],["dc.date.accessioned","2017-09-07T11:54:07Z"],["dc.date.available","2017-09-07T11:54:07Z"],["dc.date.issued","2013"],["dc.description.abstract","We introduce the heat method for computing the geodesic distance to a specified subset (e.g., point or curve) of a given domain. The heat method is robust, efficient, and simple to implement since it is based on solving a pair of standard linear elliptic problems. The resulting systems can be prefactored once and subsequently solved in near-linear time. In practice, distance is updated an order of magnitude faster than with state-of-the-art methods, while maintaining a comparable level of accuracy. The method requires only standard differential operators and can hence be applied on a wide variety of domains (grids, triangle meshes, point clouds, etc.). We provide numerical evidence that the method converges to the exact distance in the limit of refinement; we also explore smoothed approximations of distance suitable for applications where greater regularity is required."],["dc.identifier.doi","10.1145/2516971.2516977"],["dc.identifier.gro","3146519"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4302"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0730-0301"],["dc.title","Geodesics in heat"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI