Options
Brüser, Christian
Loading...
Preferred name
Brüser, Christian
Official Name
Brüser, Christian
Alternative Name
Brüser, C.
Brueser, Christian
Brueser, C.
Now showing 1 - 5 of 5
2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","9853"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","9858"],["dc.bibliographiccitation.volume","116"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Brüser, Christian"],["dc.contributor.author","Lange, Felix"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2020-12-10T18:12:52Z"],["dc.date.available","2020-12-10T18:12:52Z"],["dc.date.issued","2019"],["dc.description.abstract","Mitochondria are tubular double-membrane organelles essential for eukaryotic life. They form extended networks and exhibit an intricate inner membrane architecture. The MICOS (mitochondrial contact site and cristae organizing system) complex, crucial for proper architecture of the mitochondrial inner membrane, is localized primarily at crista junctions. Harnessing superresolution fluorescence microscopy, we demonstrate that Mic60, a subunit of the MICOS complex, as well as several of its interaction partners are arranged into intricate patterns in human and yeast mitochondria, suggesting an ordered distribution of the crista junctions. We show that Mic60 forms clusters that are preferentially localized in the inner membrane at two opposing sides of the mitochondrial tubules so that they form extended opposing distribution bands. These Mic60 distribution bands can be twisted, resulting in a helical arrangement. Focused ion beam milling-scanning electron microscopy showed that in yeast the twisting of the opposing distribution bands is echoed by the folding of the inner membrane. We show that establishment of the Mic60 distribution bands is largely independent of the cristae morphology. We suggest that Mic60 is part of an extended multiprotein interaction network that scaffolds mitochondria."],["dc.identifier.doi","10.1073/pnas.1820364116"],["dc.identifier.pmid","31028145"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74522"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/66"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Mic60 exhibits a coordinated clustered distribution along and across yeast and mammalian mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article Research Paper [["dc.bibliographiccitation.issue","14"],["dc.bibliographiccitation.journal","The EMBO Journal"],["dc.bibliographiccitation.volume","39"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Brüser, Christian"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Steyer, Anna M."],["dc.contributor.author","Balzarotti, Francisco"],["dc.contributor.author","Barbot, Mariam"],["dc.contributor.author","Behr, Tiana S."],["dc.contributor.author","Heim, Gudrun"],["dc.contributor.author","Hübner, Wolfgang"],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Lange, Felix"],["dc.contributor.author","Pacheu‐Grau, David"],["dc.contributor.author","Pape, Jasmin K."],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Huser, Thomas"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2021-04-14T08:25:12Z"],["dc.date.available","2021-04-14T08:25:12Z"],["dc.date.issued","2020"],["dc.description.abstract","Mitochondrial function is critically dependent on the folding of the mitochondrial inner membrane into cristae; indeed, numerous human diseases are associated with aberrant crista morphologies. With the MICOS complex, OPA1 and the F1Fo-ATP synthase, key players of cristae biogenesis have been identified, yet their interplay is poorly understood. Harnessing super-resolution light and 3D electron microscopy, we dissect the roles of these proteins in the formation of cristae in human mitochondria. We individually disrupted the genes of all seven MICOS subunits in human cells and re-expressed Mic10 or Mic60 in the respective knockout cell line. We demonstrate that assembly of the MICOS complex triggers remodeling of pre-existing unstructured cristae and de novo formation of crista junctions (CJs) on existing cristae. We show that the Mic60-subcomplex is sufficient for CJ formation, whereas the Mic10-subcomplex controls lamellar cristae biogenesis. OPA1 stabilizes tubular CJs and, along with the F1Fo-ATP synthase, fine-tunes the positioning of the MICOS complex and CJs. We propose a new model of cristae formation, involving the coordinated remodeling of an unstructured crista precursor into multiple lamellar cristae."],["dc.identifier.doi","10.15252/embj.2019104105"],["dc.identifier.pmid","32567732"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81550"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/51"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/115"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/25"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P04: Analyse der räumlichen Organisation der OXPHOS Assemblierung in Säugerzellen"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.relation.workinggroup","RG Hell"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Möbius"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Riedel"],["dc.rights","CC BY 4.0"],["dc.title","MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","402"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","413"],["dc.bibliographiccitation.volume","35"],["dc.contributor.author","Große, Lena"],["dc.contributor.author","Wurm, Christian Andreas"],["dc.contributor.author","Brüser, Christian"],["dc.contributor.author","Neumann, Daniel"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2017-09-07T11:54:38Z"],["dc.date.available","2017-09-07T11:54:38Z"],["dc.date.issued","2016"],["dc.description.abstract","The Bcl-2 family proteins Bax and Bak are essential for the execution of many apoptotic programs. During apoptosis, Bax translocates to the mitochondria and mediates the permeabilization of the outer membrane, thereby facilitating the release of pro-apoptotic proteins. Yet the mechanistic details of the Bax-induced membrane permeabilization have so far remained elusive. Here, we demonstrate that activated Bax molecules, besides forming large and compact clusters, also assemble, potentially with other proteins including Bak, into ring-like structures in the mitochondrial outer membrane. STED nanoscopy indicates that the area enclosed by a Bax ring is devoid of mitochondrial outer membrane proteins such as Tom20, Tom22, and Sam50. This strongly supports the view that the Bax rings surround an opening required for mitochondrial outer membrane permeabilization (MOMP). Even though these Bax assemblies may be necessary for MOMP, we demonstrate that at least in Drp1 knockdown cells, these assemblies are not sufficient for full cytochrome c release. Together, our super-resolution data provide direct evidence in support of large Bax-delineated pores in the mitochondrial outer membrane as being crucial for Bax-mediated MOMP in cells."],["dc.identifier.doi","10.15252/embj.201592789"],["dc.identifier.gro","3141728"],["dc.identifier.isi","000370346400005"],["dc.identifier.pmid","26783364"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14032"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/413"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","S2211124721014790"],["dc.bibliographiccitation.firstpage","110000"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.volume","37"],["dc.contributor.author","Brüser, Christian"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2022-01-11T14:05:34Z"],["dc.date.available","2022-01-11T14:05:34Z"],["dc.date.issued","2021"],["dc.description.abstract","In human cells, generally a single mitochondrial DNA (mtDNA) is compacted into a nucleoprotein complex denoted the nucleoid. Each cell contains hundreds of nucleoids, which tend to cluster into small groups. It is unknown whether all nucleoids are equally involved in mtDNA replication and transcription or whether distinct nucleoid subpopulations exist. Here, we use multi-color STED super-resolution microscopy to determine the activity of individual nucleoids in primary human cells. We demonstrate that only a minority of all nucleoids are active. Active nucleoids are physically larger and tend to be involved in both replication and transcription. Inactivity correlates with a high ratio of the mitochondrial transcription factor A (TFAM) to the mtDNA of the individual nucleoid, suggesting that TFAM-induced nucleoid compaction regulates nucleoid replication and transcription activity in vivo. We propose that the stable population of highly compacted inactive nucleoids represents a storage pool of mtDNAs with a lower mutational load."],["dc.identifier.doi","10.1016/j.celrep.2021.110000"],["dc.identifier.pii","S2211124721014790"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/97692"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/366"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/51"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-507"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation.issn","2211-1247"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","The TFAM-to-mtDNA ratio defines inner-cellular nucleoid populations with distinct activity levels"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article Overview [["dc.bibliographiccitation.firstpage","289"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Annual Review of Biophysics"],["dc.bibliographiccitation.lastpage","308"],["dc.bibliographiccitation.volume","49"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Brüser, Christian"],["dc.date.accessioned","2021-04-14T08:27:46Z"],["dc.date.available","2021-04-14T08:27:46Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1146/annurev-biophys-121219-081550"],["dc.identifier.pmid","32092283"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82396"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/14"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/105"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/50"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/24"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A05: Mitochondriale Heterogenität in Synapsen"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P04: Analyse der räumlichen Organisation der OXPHOS Assemblierung in Säugerzellen"],["dc.relation.eissn","1936-1238"],["dc.relation.issn","1936-122X"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.title","Light Microscopy of Mitochondria at the Nanoscale"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC