Options
Fanara, Sara
Loading...
Preferred name
Fanara, Sara
Official Name
Fanara, Sara
Alternative Name
Fanara, S.
Main Affiliation
Now showing 1 - 10 of 15
2019Journal Article [["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Contributions to Mineralogy and Petrology"],["dc.bibliographiccitation.volume","174"],["dc.contributor.author","Schanofski, Maximilian"],["dc.contributor.author","Fanara, Sara"],["dc.contributor.author","Schmidt, Burkhard C."],["dc.date.accessioned","2020-12-10T14:10:32Z"],["dc.date.available","2020-12-10T14:10:32Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1007/s00410-019-1581-7"],["dc.identifier.eissn","1432-0967"],["dc.identifier.issn","0010-7999"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/70793"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","CO2–H2O solubility in K-rich phonolitic and leucititic melts"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","International Geology Review"],["dc.bibliographiccitation.lastpage","14"],["dc.contributor.author","Pappalardo, Lucia"],["dc.contributor.author","Buono, Gianmarco"],["dc.contributor.author","Fanara, Sara"],["dc.contributor.author","Yi, Jian"],["dc.contributor.author","Shan, Xuanlong"],["dc.contributor.author","Guo, Zhengfu"],["dc.contributor.author","Zhang, Maoliang"],["dc.contributor.author","Ventura, Guido"],["dc.date.accessioned","2022-05-02T08:02:17Z"],["dc.date.available","2022-05-02T08:02:17Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1080/00206814.2022.2065544"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/107276"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-561"],["dc.relation.eissn","1938-2839"],["dc.relation.issn","0020-6814"],["dc.title","The role of CO 2 flushing in triggering the ‘Millennium’ eruption and recent unrests at Changbaishan volcano (China/North Korea)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","171"],["dc.bibliographiccitation.journal","Chemical Geology"],["dc.bibliographiccitation.lastpage","181"],["dc.bibliographiccitation.volume","461"],["dc.contributor.author","Fanara, Sara"],["dc.contributor.author","Sottili, Gianluca"],["dc.contributor.author","Silleni, Aurora"],["dc.contributor.author","Palladino, Danilo M."],["dc.contributor.author","Schmidt, Burkhard C."],["dc.date.accessioned","2020-12-10T14:23:03Z"],["dc.date.available","2020-12-10T14:23:03Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.chemgeo.2016.12.033"],["dc.identifier.issn","0009-2541"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71819"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","CO2 bubble nucleation upon pressure release in potassium-rich silicate magmas"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Contributions to Mineralogy and Petrology"],["dc.bibliographiccitation.volume","175"],["dc.contributor.author","Kleest, Christin"],["dc.contributor.author","Webb, Sharon L."],["dc.contributor.author","Fanara, Sara"],["dc.date.accessioned","2021-04-14T08:24:45Z"],["dc.date.available","2021-04-14T08:24:45Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1007/s00410-020-01720-1"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81408"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1432-0967"],["dc.relation.haserratum","/handle/2/83838"],["dc.relation.issn","0010-7999"],["dc.title","Rheology of melts from the colli albani volcanic district (Italy): a case study"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article Erratum [["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Contributions to Mineralogy and Petrology"],["dc.bibliographiccitation.volume","175"],["dc.contributor.author","Kleest, Christin"],["dc.contributor.author","Webb, Sharon L."],["dc.contributor.author","Fanara, Sara"],["dc.date.accessioned","2021-04-14T08:32:11Z"],["dc.date.available","2021-04-14T08:32:11Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1007/s00410-020-01739-4"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83838"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1432-0967"],["dc.relation.iserratumof","/handle/2/81408"],["dc.relation.issn","0010-7999"],["dc.title","Correction to: Rheology of melts from the Colli Albani Volcanic District (Italy): a case study"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","erratum_ja"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article [["dc.bibliographiccitation.artnumber","S0012825221001550"],["dc.bibliographiccitation.firstpage","103654"],["dc.bibliographiccitation.journal","Earth-Science Reviews"],["dc.bibliographiccitation.volume","220"],["dc.contributor.author","Buono, Gianmarco"],["dc.contributor.author","Fanara, Sara"],["dc.contributor.author","Macedonio, Giovanni"],["dc.contributor.author","Palladino, Danilo M."],["dc.contributor.author","Petrosino, Paola"],["dc.contributor.author","Sottili, Gianluca"],["dc.contributor.author","Pappalardo, Lucia"],["dc.date.accessioned","2021-12-01T09:24:09Z"],["dc.date.available","2021-12-01T09:24:09Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1016/j.earscirev.2021.103654"],["dc.identifier.pii","S0012825221001550"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94864"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation.issn","0012-8252"],["dc.title","Reply to “Comment on the paper by Buono et al. “Dynamics of degassing in evolved alkaline magmas: Petrological, experimental and theoretical insights” (Earth Science Reviews, 211 (2020), 103402)”"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","688"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Geophysical Journal International"],["dc.bibliographiccitation.lastpage","694"],["dc.bibliographiccitation.volume","209"],["dc.contributor.author","Sottili, Gianluca"],["dc.contributor.author","Fanara, Sara"],["dc.contributor.author","Silleni, Aurora"],["dc.contributor.author","Palladino, Danilo M."],["dc.contributor.author","Schmidt, Burkhard C."],["dc.date.accessioned","2018-11-07T10:24:08Z"],["dc.date.available","2018-11-07T10:24:08Z"],["dc.date.issued","2017"],["dc.description.abstract","The volatile content in magmas is fundamental for the triggering and style of volcanic eruptions. Carbon dioxide, the second most abundant volatile component in magmas after H2O, is the first to reach saturation upon ascent and depressurization. We investigate experimentally CO2-bubble nucleation in trachybasalt and trachyte melts at high temperature and high pressure (HT and HP) through wetting-angle measurements on different (sialic, mafic or oxide) phenocryst phases. The presence of crystals lowers the supersaturation required for CO(2-)bubble nucleation up to 37 per cent (heterogeneous nucleation, HeN), with a minor role of mineral chemistry. Different from H2O-rich systems, feldspar crystals are effective in reducing required supersaturation for bubble nucleation. Our data suggest that leucite, the dominant liquidus phase in ultrapotassic systems at shallow depth (i.e. <100 MPa), facilitates late-stage, extensive magma vesiculation through CO2 HeN, which may explain the shifting of CO2-rich eruptive systems towards an apparently anomalous explosive behaviour."],["dc.identifier.doi","10.1093/gji/ggx039"],["dc.identifier.isi","000402641600012"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42599"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","1365-246X"],["dc.relation.issn","0956-540X"],["dc.title","CO2-crystal wettability in potassic magmas: implications for eruptive dynamics in light of experimental evidence for heterogeneous nucleation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS2021Journal Article [["dc.bibliographiccitation.firstpage","120037"],["dc.bibliographiccitation.journal","Chemical Geology"],["dc.bibliographiccitation.volume","562"],["dc.contributor.author","Bissbort, Thilo"],["dc.contributor.author","Becker, Hans-Werner"],["dc.contributor.author","Fanara, Sara"],["dc.contributor.author","Chakraborty, Sumit"],["dc.date.accessioned","2021-04-14T08:29:02Z"],["dc.date.available","2021-04-14T08:29:02Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1016/j.chemgeo.2020.120037"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82775"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.issn","0009-2541"],["dc.title","Novel approach to study diffusion of hydrogen bearing species in silicate glasses at low temperatures"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","6"],["dc.bibliographiccitation.journal","Journal of Non-Crystalline Solids"],["dc.bibliographiccitation.lastpage","16"],["dc.bibliographiccitation.volume","455"],["dc.contributor.author","Fanara, Sara"],["dc.contributor.author","Sengupta, Pranesh"],["dc.contributor.author","Becker, Hans-Werner"],["dc.contributor.author","Rogalla, Detlef"],["dc.contributor.author","Chakraborty, Sumit"],["dc.date.accessioned","2018-11-07T10:29:34Z"],["dc.date.available","2018-11-07T10:29:34Z"],["dc.date.issued","2017"],["dc.description.abstract","Viscosity and diffusivity of silicate melts and glasses are related to each other through relaxation timescales. The systematic is explored based on published data. Diffusion coefficients for Sr and Ba were measured in calcium aluminosilicate glasses at conditions near the glass/supercooled liquid boundary in temperature - time space making use of thin film technology and Rutherford Backscattering Spectroscopy (RBS) to measure concentration profiles on nanoscales. These data extend the range of published diffusion coefficients and combined with the systematic noted above allow the nature of change of diffusion coefficients across the glass transition region to be studied. Activation energies for diffusion in the glassy state (similar to 360 kJ/mol) are higher than in the molten liquid (similar to 213 kJ/mol). A defect based model of glass transition derived by Ojovan and coworkers, where attainment of a percolation threshold of configuron-type defects accounts for the glass - liquid transition, can explain the observed diffusion behaviour. Data treatment using this model yields a defect formation enthalpy of similar to 146 kJ/mol and a migration enthalpy of similar to 213 kJ/mol. The results of this study provide generalized expressions for the prediction of diffusion coefficients of cations in silicate melts for any composition at any temperature. (C) 2016 Published by Elsevier B.V."],["dc.identifier.doi","10.1016/j.jnoncrysol.2016.10.013"],["dc.identifier.isi","000390074200002"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43667"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Elsevier Science Bv"],["dc.relation.issn","1873-4812"],["dc.relation.issn","0022-3093"],["dc.title","Diffusion across the glass transition in silicate melts: Systematic correlations, new experimental data for Sr and Ba in calcium-aluminosilicate glasses and general mechanisms of ionic transport"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS2017Journal Article [["dc.bibliographiccitation.firstpage","76"],["dc.bibliographiccitation.journal","Chemical Geology"],["dc.bibliographiccitation.lastpage","86"],["dc.bibliographiccitation.volume","475"],["dc.contributor.author","Di Genova, Danilo"],["dc.contributor.author","Sicola, Stefania"],["dc.contributor.author","Romano, Claudia"],["dc.contributor.author","Vona, Alessandro"],["dc.contributor.author","Fanara, Sara"],["dc.contributor.author","Spina, Laura"],["dc.date.accessioned","2019-07-09T11:44:48Z"],["dc.date.available","2019-07-09T11:44:48Z"],["dc.date.issued","2017"],["dc.description.abstract","The effect of iron content and iron nanolites on Raman spectra of hydrous geologically-relevant glasses is presented. Current procedures to estimate the water content using Raman spectra were tested to explore potential effects of iron content, its oxidation state, and nanolites on models' reliability. A chemical interval spanning from basalt to rhyolite, including alkali- and iron-rich compositions, with water content up to 5.6 wt% was investigated using two spectrometers. When considering nanolite-free samples, the area of the band at 3550 cm−1 linearly correlates with the sample water content regardless of chemical composition. Using this approach, data were reproduced with a root-mean-square error (RMSE) of ~ 0.15 wt%. Depending on the sample chemistry, water content, and acquisition conditions the laser-induced sample oxidation led to underestimating the water content up to ~ 90% with a long acquisition time (26 min). Normalising the water band region to the silicate band region minimises such a limitation. The area ratio between these bands linearly correlates with the water content and the use of different baseline procedures does not remove the dependence of such a correlation by the iron content and its oxidation state. With this procedure, data were reproduced with a RMSE of ~ 0.16 wt%. For both approaches, the presence of iron nanolites may result in underestimating the water content."],["dc.identifier.doi","10.1016/j.chemgeo.2017.10.035"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14903"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59098"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/612776/EU//CHRONOS"],["dc.relation.issn","0167-6695"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.subject.ddc","550"],["dc.title","Effect of iron and nanolites on Raman spectra of volcanic glasses: A reassessment of existing strategies to estimate the water content"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI