Options
Risselada, Herre Jelger
Loading...
Preferred name
Risselada, Herre Jelger
Official Name
Risselada, Herre Jelger
Alternative Name
Risselada, H. J.
Risselada, Herre. J.
Risselada, H. Jelger
Risselada, Jelger H.
Main Affiliation
Now showing 1 - 10 of 41
2019Journal Article [["dc.bibliographiccitation.firstpage","2235"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","2236"],["dc.bibliographiccitation.volume","116"],["dc.contributor.author","Risselada, Herre Jelger"],["dc.date.accessioned","2020-12-10T14:22:46Z"],["dc.date.available","2020-12-10T14:22:46Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1016/j.bpj.2019.05.003"],["dc.identifier.issn","0006-3495"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71726"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Cholesterol: The Plasma Membrane’s Constituent that Chooses Sides"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article [["dc.bibliographiccitation.artnumber","108598"],["dc.bibliographiccitation.journal","Data in Brief"],["dc.bibliographiccitation.volume","45"],["dc.contributor.author","John, Torsten"],["dc.contributor.author","Martin, Lisandra L."],["dc.contributor.author","Risselada, Herre Jelger"],["dc.contributor.author","Abel, Bernd"],["dc.date.accessioned","2022-12-01T08:32:00Z"],["dc.date.available","2022-12-01T08:32:00Z"],["dc.date.issued","2022"],["dc.description.sponsorship"," http://dx.doi.org/10.13039/501100001659 Deutsche Forschungsgemeinschaft"],["dc.description.sponsorship"," http://dx.doi.org/10.13039/501100005846 Friedrich-Ebert-Stiftung"],["dc.identifier.doi","10.1016/j.dib.2022.108598"],["dc.identifier.pii","S2352340922008058"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/118333"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.issn","2352-3409"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Curvature model for nanoparticle size effects on peptide fibril stability and molecular dynamics simulation data"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article [["dc.bibliographiccitation.firstpage","5276"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Journal of Chemical Theory and Computation"],["dc.bibliographiccitation.lastpage","5286"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Stroh, Kai Steffen"],["dc.contributor.author","Risselada, Herre Jelger"],["dc.date.accessioned","2021-09-01T06:42:27Z"],["dc.date.available","2021-09-01T06:42:27Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1021/acs.jctc.1c00021"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89058"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-455"],["dc.relation.eissn","1549-9626"],["dc.relation.issn","1549-9618"],["dc.title","Quantifying Membrane Curvature Sensing of Peripheral Proteins by Simulated Buckling and Umbrella Sampling"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2011Journal Article Research Paper [["dc.bibliographiccitation.firstpage","552"],["dc.bibliographiccitation.issue","7374"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","555"],["dc.bibliographiccitation.volume","479"],["dc.contributor.author","van den Bogaart, Geert"],["dc.contributor.author","Meyenberg, Karsten"],["dc.contributor.author","Risselada, H. Jelger"],["dc.contributor.author","Amin, Hayder"],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Hubrich, Barbara E."],["dc.contributor.author","Dier, Markus"],["dc.contributor.author","Hell, Stefan"],["dc.contributor.author","Grubmüller, Helmut"],["dc.contributor.author","Diederichsen, Ulf"],["dc.contributor.author","Jahn, Reinhard"],["dc.date.accessioned","2017-09-07T11:43:16Z"],["dc.date.available","2017-09-07T11:43:16Z"],["dc.date.issued","2011"],["dc.description.abstract","Neuronal exocytosis is catalysed by the SNAP receptor protein syntaxin-1A(1), which is clustered in the plasma membrane at sites where synaptic vesicles undergo exocytosis(2,3). However, how syntaxin-1A is sequestered is unknown. Here we show that syntaxin clustering is mediated by electrostatic interactions with the strongly anionic lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Using super-resolution stimulated-emission depletion microscopy on the plasma membranes of PC12 cells, we found that PIP2 is the dominant inner-leaflet lipid in microdomains about 73 nanometres in size. This high accumulation of PIP2 was required for syntaxin-1A sequestering, as destruction of PIP2 by the phosphatase synaptojanin-1 reduced syntaxin-1A clustering. Furthermore, coreconstitution of PIP2 and the carboxy-terminal part of syntaxin-1A in artificial giant unilamellar vesicles resulted in segregation of PIP2 and syntaxin-1A into distinct domains even when cholesterol was absent. Our results demonstrate that electrostatic protein-lipid interactions can result in the formation of microdomains independently of cholesterol or lipid phases."],["dc.identifier.doi","10.1038/nature10545"],["dc.identifier.gro","3142626"],["dc.identifier.isi","000297285600056"],["dc.identifier.pmid","22020284"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/51"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0028-0836"],["dc.title","Membrane protein sequestering by ionic protein-lipid interactions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2019Journal Article [["dc.bibliographiccitation.firstpage","783"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biomacromolecules"],["dc.bibliographiccitation.lastpage","792"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","John, Torsten"],["dc.contributor.author","Bandak, Juhaina"],["dc.contributor.author","Sarveson, Nilushiya"],["dc.contributor.author","Hackl, Claudia"],["dc.contributor.author","Risselada, Herre Jelger"],["dc.contributor.author","Prager, Andrea"],["dc.contributor.author","Elsner, Christian"],["dc.contributor.author","Abel, Bernd"],["dc.date.accessioned","2020-12-10T15:22:31Z"],["dc.date.available","2020-12-10T15:22:31Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1021/acs.biomac.9b01466"],["dc.identifier.eissn","1526-4602"],["dc.identifier.issn","1525-7797"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73432"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Growth, Polymorphism, and Spatially Controlled Surface Immobilization of Biotinylated Variants of IAPP 21–27 Fibrils"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.firstpage","6775"],["dc.bibliographiccitation.issue","31"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry B"],["dc.bibliographiccitation.lastpage","6785"],["dc.bibliographiccitation.volume","124"],["dc.contributor.author","Endter, Laura Josefine"],["dc.contributor.author","Smirnova, Yuliya"],["dc.contributor.author","Risselada, Herre Jelger"],["dc.date.accessioned","2021-04-14T08:24:31Z"],["dc.date.available","2021-04-14T08:24:31Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1021/acs.jpcb.0c03982"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81314"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1520-5207"],["dc.relation.issn","1520-6106"],["dc.title","Density Field Thermodynamic Integration (DFTI): A “Soft” Approach to Calculate the Free Energy of Surfactant Self-Assemblies"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2011Journal Article Research Paper [["dc.bibliographiccitation.firstpage","805"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Nature Structural & Molecular Biology"],["dc.bibliographiccitation.lastpage","U82"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","van den Bogaart, Geert"],["dc.contributor.author","Thutupalli, Shashi"],["dc.contributor.author","Risselada, J. H."],["dc.contributor.author","Meyenberg, Karsten"],["dc.contributor.author","Holt, Matthew"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Diederichsen, Ulf"],["dc.contributor.author","Herminghaus, Stephan"],["dc.contributor.author","Grubmüller, Helmut"],["dc.contributor.author","Jahn, Reinhard"],["dc.date.accessioned","2017-09-07T11:44:10Z"],["dc.date.available","2017-09-07T11:44:10Z"],["dc.date.issued","2011"],["dc.description.abstract","Synaptotagmin-1 triggers Ca2+-sensitive, rapid neurotransmitter release by promoting interactions between SNARE proteins on synaptic vesicles and the plasma membrane. How synaptotagmin-1 promotes this interaction is unclear, and the massive increase in membrane fusion efficiency of Ca2+-bound synaptotagmin-1 has not been reproduced in vitro. However, previous experiments have been performed at relatively high salt concentrations, screening potentially important electrostatic interactions. Using functional reconstitution in liposomes, we show here that at low ionic strength SNARE-mediated membrane fusion becomes strictly dependent on both Ca2+ and synaptotagmin-1. Under these conditions, synaptotagmin-1 functions as a distance regulator that tethers the liposomes too far from the plasma membrane for SNARE nucleation in the absence of Ca2+, but while bringing the liposomes close enough for membrane fusion in the presence of Ca2+. These results may explain how the relatively weak electrostatic interactions between synaptotagmin-1 and membranes substantially accelerate fusion."],["dc.identifier.doi","10.1038/nsmb.2061"],["dc.identifier.gro","3142704"],["dc.identifier.isi","000292507500009"],["dc.identifier.pmid","21642968"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/138"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1545-9993"],["dc.title","Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2022Journal Article [["dc.bibliographiccitation.firstpage","804"],["dc.bibliographiccitation.journal","Journal of Colloid and Interface Science"],["dc.bibliographiccitation.lastpage","818"],["dc.bibliographiccitation.volume","622"],["dc.contributor.author","John, Torsten"],["dc.contributor.author","Adler, Juliane"],["dc.contributor.author","Elsner, Christian"],["dc.contributor.author","Petzold, Johannes"],["dc.contributor.author","Krueger, Martin"],["dc.contributor.author","Martin, Lisandra L."],["dc.contributor.author","Huster, Daniel"],["dc.contributor.author","Risselada, Herre Jelger"],["dc.contributor.author","Abel, Bernd"],["dc.date.accessioned","2022-06-01T09:40:18Z"],["dc.date.available","2022-06-01T09:40:18Z"],["dc.date.issued","2022"],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft"],["dc.description.sponsorship"," Friedrich-Ebert-Stiftung"],["dc.description.sponsorship"," Australian Government"],["dc.description.sponsorship"," Department of Education and Training"],["dc.identifier.doi","10.1016/j.jcis.2022.04.134"],["dc.identifier.pii","S0021979722007044"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/108688"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-572"],["dc.relation.issn","0021-9797"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2011-05-02Journal Article [["dc.bibliographiccitation.firstpage","1049"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Chembiochem : a European journal of chemical biology"],["dc.bibliographiccitation.lastpage","1055"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Risselada, Herre Jelger"],["dc.contributor.author","Kutzner, Carsten"],["dc.contributor.author","Grubmüller, Helmut"],["dc.date.accessioned","2018-02-13T10:05:22Z"],["dc.date.available","2018-02-13T10:05:22Z"],["dc.date.issued","2011-05-02"],["dc.description.abstract","Neurotransmitter release at the synapse requires fusion of synaptic vesicles with the presynaptic plasma membrane. SNAREs are the core constituents of the protein machinery responsible for this membrane fusion, but the actual fusion mechanism remains unclear. Here, we have simulated neuronal SNARE-mediated membrane fusion in molecular detail. In our simulations, membrane fusion progresses through an inverted micelle fusion intermediate before reaching the hemifused state. We show that at least one single SNARE complex is required for fusion, as has also been confirmed in a recent in vitro single-molecule fluoresence study. Further, the transmembrane regions of the SNAREs were found to play a vital role in the initiation of fusion by causing distortions of the lipid packing of the outer membrane leaflets, and the C termini of the transmembrane regions are associated with the formation of the fusion pores. The inherent mechanical stress in the linker region of the SNARE complex was found to drive both the subsequent formation and expansion of fusion pores. Our simulations also revealed that the presence of homodimerizations between the transmembrane regions leads to the formation of unstable fusion intermediates that are under high curvature stress. We show that multiple SNARE complexes mediate membrane fusion in a cooperative and synchronized process. Finally, we show that after fusion, the zipping of the SNAREs extends into the membrane region, in agreement with the recently resolved X-ray structure of the fully assembled state."],["dc.identifier.doi","10.1002/cbic.201100020"],["dc.identifier.pmid","21433241"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/12206"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1439-7633"],["dc.title","Caught in the act: visualization of SNARE-mediated fusion events in molecular detail"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2013Conference Abstract [["dc.bibliographiccitation.firstpage","664a"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.volume","104"],["dc.contributor.author","Risselada, Herre Jelger"],["dc.contributor.author","Müller, Marcus"],["dc.contributor.author","Grubmüller, Karl Helmut"],["dc.date.accessioned","2018-11-07T09:29:00Z"],["dc.date.available","2018-11-07T09:29:00Z"],["dc.date.issued","2013"],["dc.identifier.doi","10.1016/j.bpj.2012.11.3664"],["dc.identifier.isi","000316074306354"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/30918"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-393"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cell Press"],["dc.publisher.place","Cambridge"],["dc.relation.eventlocation","Philadelphia, PA"],["dc.relation.issn","0006-3495"],["dc.title","Fusion Proteins - Different Tools for Different Jobs?"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI WOS